Developmental effects are among the most important and least well-understood concerns in toxicology. Our long-term goal is to identify and understand developmental effects of chemicals that are abundant at Superfund sites, and molecular participants in effects. Polychlorinated biphenyls (F'CBs) are persistent and prevalent contaminants in the global environment, of continuing concern at many Superfund sites, including New Bedford Harbor (NBH). Non-ortho (dioxin-like) PCBs bind to the aryl hydrocarbon receptor (AHR), induce cytochrome P4501 (CYPI) genes, and cause developmental abnormalities. Ortho-substituted PCBs are far more abundant but effects, especially on development, are poorly known. There is no knowledge of which congeners interact with receptors (other than AHR), induce CYPs or exert toxicity in premier nonmammalian models for developmental and environmental toxicology (zebrafish, Danio rerio and killifish, Fundulus heterociitus).
Aim 1. This Aim will address the hypothesis that ortho-PCBs elicit distinct molecular and phenotypic responses in zebrafish. Ortho-PCB congeners abundant at the Superfund site at NBH will be studied. We will identify transcriptomic effects with a unique microarray (with probes for all 94 zebrafish CYP genes) and by microfluidic qPCR. Ortho-PCB action as agonists or antagonists of PXR will be detennined. Transcriptomic changes and potential mechanisms will be anchored to phenotypic changes (morphological and behavioral).
Aim 2. Ortho-PCBs will be examined as substrates/ligands for CYPs and receptors (likely PXR) implicated in Aim 1. Involvement in toxicity will be assessed by knockdown of CYP or receptor expression.
Aim 3. We will determine effects of defined mixtures of ortho-PCBs with non-ortho-PCB and polycyclic aromatic hydrocarbon (PAH) AHR agonists, using a Generalized Concentration Addition model.
Aim 4. Studies in killifish will address the environmental and general relevance of findings in zebrafish, and will test the hypothesis that a population that has developed resistance to dioxin-like PCBs is resistant also to effects of ortho-PCBs, expanding our understanding of resistance adaptation. This will be a uniquely comprehensive study of ortho-PCB congener effects on development, and the possible mechanisms.

Public Health Relevance

The project will generate important resources and knowledge for the basic research and risk assessment communities. Information generated will help us understand how ortho-PCBs and chemical mixtures affect development in animals generally, which may inform studies for such effects in other animals including humans. Information and tools will be important for researchers studying mechanisms of chemical effects.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-JAB-J (SF))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Boston University
United States
Zip Code
Carwile, Jenny L; Mahalingaiah, Shruthi; Winter, Michael R et al. (2014) Prenatal drinking-water exposure to tetrachloroethylene and ischemic placental disease: a retrospective cohort study. Environ Health 13:72
Lowe, Margaret M; Mold, Jeff E; Kanwar, Bittoo et al. (2014) Identification of cinnabarinic acid as a novel endogenous aryl hydrocarbon receptor ligand that drives IL-22 production. PLoS One 9:e87877
Hoffman, Kate; Vieira, Veronica M; Daniels, Julie L (2014) Brief report: diminishing geographic variability in autism spectrum disorders over time? J Autism Dev Disord 44:712-8
Parks, Ashley J; Pollastri, Michael P; Hahn, Mark E et al. (2014) In silico identification of an aryl hydrocarbon receptor antagonist with biological activity in vitro and in vivo. Mol Pharmacol 86:593-608
Morrison, Ann Michelle Stanley; Goldstone, Jared V; Lamb, David C et al. (2014) Identification, modeling and ligand affinity of early deuterostome CYP51s, and functional characterization of recombinant zebrafish sterol 14*-demethylase. Biochim Biophys Acta 1840:1825-36
Pillai, Hari K; Fang, Mingliang; Beglov, Dmitri et al. (2014) Ligand binding and activation of PPAR? by Firemaster® 550: effects on adipogenesis and osteogenesis in vitro. Environ Health Perspect 122:1225-32
Reitzel, Adam M; Karchner, Sibel I; Franks, Diana G et al. (2014) Genetic variation at aryl hydrocarbon receptor (AHR) loci in populations of Atlantic killifish (Fundulus heteroclitus) inhabiting polluted and reference habitats. BMC Evol Biol 14:6
Bristow, Robert E; Chang, Jenny; Ziogas, Argyrios et al. (2014) Spatial analysis of adherence to treatment guidelines for advanced-stage ovarian cancer and the impact of race and socioeconomic status. Gynecol Oncol 134:60-7
Quintana, Francisco J; Sherr, David H (2013) Aryl hydrocarbon receptor control of adaptive immunity. Pharmacol Rev 65:1148-61
Fraccalvieri, Domenico; Soshilov, Anatoly A; Karchner, Sibel I et al. (2013) Comparative analysis of homology models of the AH receptor ligand binding domain: verification of structure-function predictions by site-directed mutagenesis of a nonfunctional receptor. Biochemistry 52:714-25

Showing the most recent 10 out of 279 publications