Developmental neurotoxicity is one of the most sensitive outcomes of environmental chemical exposures. In past grant periods, we showed how exposures to otherwise unrelated agents can nevertheless produce similar outcomes because of convergence on adverse effects targeted towards specific neurotransmitter pathways, particularly acetylcholine (ACh) and serotonin (5HT). These are the same transmitters affected by common prenatal exposures to nicotine in maternal smoking, or dexamethasone as used in the therapy of preterm infants, raising the likelihood that these exposures create a subpopulation that will be sensitive to developmental neurotoxicants. In the current study, we will examine the ability of such treatments to sensitize the developing brain to subsequent exposure to chlorpyrifos, an organophosphate pesticide, and will then extend the approach to agents being evaluated in other projects and cores within the Center (polybrominated flame retardants, polyaromatic hydrocarbons). There are three aims: 1. To determine how fetal exposure to nicotine, in a model simulating nicotine levels in human smokers, sensitizes the developing brain to subsequent postnatal chlorpyrifos exposure. Neurotransmitter pathways and behavioral outcomes will be assessed in the rat. Mechanisms will be evaluated in three neural cell culture models (PCI2, mixed fetal neuronal and glial cultures, neural stem cell cultures). 2. To determine how fetal exposure to dexamethasone, in a model simulating its use in preterm labor, sensitizes the developing brain to subsequent postnatal chlorpyrifos exposure. The same approach is used as in Aim 1: studies in rats to determine neurotransmitter pathways underlying effects on behavioral outcomes, along with cell culture models to identify cellular mechanisms of injury. 3. To extend this approach to two suspected neurotoxicants of different classes, identified in other projects within the Center. PBDE99 as a representative of the polybrominated flame retardants and benzo[a]pyrene as a representative of the polycyclic aromatic hydrocarbons.

Public Health Relevance

Environmental chemical exposures contribute to the increased incidence of neurodevelopmental disorders. This project explores sensitive subpopulations created by prenatal exposure to nicotine, modeling the effects of maternal smoking, and dexamethasone, the consensus treatment in preterm delivery. We will determine how otherwise unrelated neurotoxicants can converge on similar functional and behavioral outcomes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES010356-13
Application #
8659450
Study Section
Special Emphasis Panel (ZES1-SET-V)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
13
Fiscal Year
2014
Total Cost
$277,000
Indirect Cost
$99,435
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Brown, D R; Bailey, J M; Oliveri, A N et al. (2016) Developmental exposure to a complex PAH mixture causes persistent behavioral effects in naive Fundulus heteroclitus (killifish) but not in a population of PAH-adapted killifish. Neurotoxicol Teratol 53:55-63
Luz, Anthony L; Godebo, Tewodros R; Bhatt, Dhaval P et al. (2016) From the Cover: Arsenite Uncouples Mitochondrial Respiration and Induces a Warburg-like Effect in Caenorhabditis elegans. Toxicol Sci 152:349-62
Lefevre, Emilie; Bossa, Nathan; Wiesner, Mark R et al. (2016) A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities. Sci Total Environ 565:889-901
Czaplicki, L M; Cooper, E; Ferguson, P L et al. (2016) A New Perspective on Sustainable Soil Remediation-Case Study Suggests Novel Fungal Genera Could Facilitate in situ Biodegradation of Hazardous Contaminants. Remediation (N Y) 26:59-72
Chernick, Melissa; Ware, Megan; Albright, Elizabeth et al. (2016) Parental dietary seleno-L-methionine exposure and resultant offspring developmental toxicity. Aquat Toxicol 170:187-98
Cooper, Ellen M; Kroeger, Gretchen; Davis, Katherine et al. (2016) Results from Screening Polyurethane Foam Based Consumer Products for Flame Retardant Chemicals: Assessing Impacts on the Change in the Furniture Flammability Standards. Environ Sci Technol 50:10653-10660
Riley, Amanda K; Chernick, Melissa; Brown, Daniel R et al. (2016) Hepatic Responses of Juvenile Fundulus heteroclitus from Pollution-adapted and Nonadapted Populations Exposed to Elizabeth River Sediment Extract. Toxicol Pathol 44:738-48
Santa-Gonzalez, Gloria A; Gomez-Molina, Andrea; Arcos-Burgos, Mauricio et al. (2016) Distinctive adaptive response to repeated exposure to hydrogen peroxide associated with upregulation of DNA repair genes and cell cycle arrest. Redox Biol 9:124-133
Petro, Ann; Sexton, Hannah G; Miranda, Caroline et al. (2016) Persisting neurobehavioral effects of developmental copper exposure in wildtype and metallothionein 1 and 2 knockout mice. BMC Pharmacol Toxicol 17:55
Abreu-Villaça, Yael; Levin, Edward D (2016) Developmental neurotoxicity of succeeding generations of insecticides. Environ Int :

Showing the most recent 10 out of 249 publications