The goal of Project 4 is to elucidate the separate and combined effects of nanomaterial-based processes and microbial degradation on transformations of target Superfund chemicals, to better understand how nanomaterial-based remediation technologies might be best applied and, to achieve a maximum reduction in toxicity using combined nano-bio remediation. In addition, we seek to understand the potential impacts of nanomaterials themselves on the microbial ecology in sediments. The target contaminants for this study include an organophosphate insecticide (chlorpyrifos), a representative polycyclic aromatic hydrocarbon (benzo[a]pyrene), and a polybrominated flame retardant (decabrominated diphenyl ether, BDE-209). The pervasiveness of these compounds has resulted in a significant need for remediation-strategies to ameliorate their toxicity;however, care must be taken to ensure that remediation techniques do not result in increased toxicity or adverse effects from the use of the technology and/or the degradation products. This project studies remediation using zero valent iron (ZVI) and titanium dioxide (Ti02) nanomaterials for contaminant degradation. Our objectives are to: 1) Investigate the use of nanomaterials as catalysts for direct treatment of sediment and water contaminated by developmental toxicants;2) Assess microbial degradation of the target contaminants by sediment microorganisms with and without nanomaterials;and 3) Uncover possible synergies (or unintended antagonistic effects) of nanoparticle-based remediation with natural microbial degradation processes.

Public Health Relevance

This project will provide guidance for the possible application of TiO2 or ZVI nanoparticles in remediating contaminated sites to achieve long-term degradation of targeted compounds through source treatment combined with in-situ natural attenuation, as well as treatment of dredged material.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-SET-V)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Duke University
United States
Zip Code
Brown, Daniel R; Clark, Bryan W; Garner, Lindsey V T et al. (2015) Zebrafish cardiotoxicity: the effects of CYP1A inhibition and AHR2 knockdown following exposure to weak aryl hydrocarbon receptor agonists. Environ Sci Pollut Res Int 22:8329-38
Slotkin, Theodore A; Card, Jennifer; Seidler, Frederic J (2014) Prenatal dexamethasone, as used in preterm labor, worsens the impact of postnatal chlorpyrifos exposure on serotonergic pathways. Brain Res Bull 100:44-54
Levin, Edward D; Cauley, Marty; Johnson, Joshua E et al. (2014) Prenatal dexamethasone augments the neurobehavioral teratology of chlorpyrifos: significance for maternal stress and preterm labor. Neurotoxicol Teratol 41:35-42
Pillai, Hari K; Fang, Mingliang; Beglov, Dmitri et al. (2014) Ligand binding and activation of PPAR? by Firemaster® 550: effects on adipogenesis and osteogenesis in vitro. Environ Health Perspect 122:1225-32
Bess, Amanda S; Ryde, Ian T; Hinton, David E et al. (2013) UVC-induced mitochondrial degradation via autophagy correlates with mtDNA damage removal in primary human fibroblasts. J Biochem Mol Toxicol 27:28-41
Dong, Wu; Macaulay, Laura J; Kwok, Kevin W H et al. (2013) Using whole mount in situ hybridization to examine thyroid hormone deiodinase expression in embryonic and larval zebrafish: a tool for examining OH-BDE toxicity to early life stages. Aquat Toxicol 132-133:190-9
Slotkin, Theodore A; Cooper, Ellen M; Stapleton, Heather M et al. (2013) Does thyroid disruption contribute to the developmental neurotoxicity of chlorpyrifos? Environ Toxicol Pharmacol 36:284-7
Clark, Bryan W; Cooper, Ellen M; Stapleton, Heather M et al. (2013) Compound- and mixture-specific differences in resistance to polycyclic aromatic hydrocarbons and PCB-126 among Fundulus heteroclitus subpopulations throughout the Elizabeth River estuary (Virginia, USA). Environ Sci Technol 47:10556-66
Garner, Lindsey V T; Brown, Daniel R; Di Giulio, Richard T (2013) Knockdown of AHR1A but not AHR1B exacerbates PAH and PCB-126 toxicity in zebrafish (Danio rerio) embryos. Aquat Toxicol 142-143:336-46
Zhao, Bin; Bohonowych, Jessica E S; Timme-Laragy, Alicia et al. (2013) Common commercial and consumer products contain activators of the aryl hydrocarbon (dioxin) receptor. PLoS One 8:e56860

Showing the most recent 10 out of 198 publications