The Analytical Chemistry Core (ACC;Core B) will be a new addition to Duke University's established Superfund Research Center (SRC). The mission of Duke's SRC has been and continues to be identifying the expression and mechanisms of developmental effects from early life exposure to Superfund chemicals and their transformation products. Addition of an analytical chemistry core to this center will enhance the biomedical and non-biomedical projects by providing state-of-the-art analytical support to monitor and quantify organic contaminant levels which can aid in identifying mechanisms of developmental toxicity. Adding the support of an ACC will provide the means of evaluating key relationships between exposures and body burdens, which will help determine what the potential biological "costs" of early life exposures are for both humans and ecosystems;and furthermore, to determine whether or not remediation strategies are effective or if they increase these costs. The ACC will provide services for routine analyses of samples for organophosphate pesticides (e.g. chlorpyrifos), polycyclic aromatic hydrocarbons (PAHs), and brominated flame retardants (e.g. polybrominated diphenyl ethers) levels. In addition this core will assist in the identification of contaminant degradation products and/or metabolites which will be examined in several research projects. Lastly, the ACC will also serve as a teaching and training center for Duke University undergraduate and graduate students. The ACC will be supervised by Dr. P. Lee Ferguson, an Associate Professor of Environmental Science &Engineering with over ten years of experience in environmental mass spectrometry and trace analysis. Dr. Heather M. Stapleton, an Assistant Professor of Environmental Science and experienced trace analytical chemist, will serve as co-principal investigator and help manage the ACC. Drs. Ferguson and Stapleton currently supervise research laboratories equipped for high through-put extraction and analysis of samples for trace organic chemicals using a combination of gas chromatography mass spectrometry (GC/MS), liquid chromatography tandem mass spectrometry (HPLC/MS-MS), and high resolution mass spectrometry (HPLC/Orbitrap MS).

Public Health Relevance

The function of this Analytical Chemistry Core (Core B) will be to provide routine sample analysis and monitoring of Superfund contaminants examined in individual biomedical and non-biomedical projects, and in identifying degradation products and/or metabolites of these Superfund contaminants. This service will be utilized by all projects detailed in Duke's Superfund Research Center.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-SET-V)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Duke University
United States
Zip Code
Brown, Daniel R; Clark, Bryan W; Garner, Lindsey V T et al. (2015) Zebrafish cardiotoxicity: the effects of CYP1A inhibition and AHR2 knockdown following exposure to weak aryl hydrocarbon receptor agonists. Environ Sci Pollut Res Int 22:8329-38
Slotkin, Theodore A; Card, Jennifer; Seidler, Frederic J (2014) Prenatal dexamethasone, as used in preterm labor, worsens the impact of postnatal chlorpyrifos exposure on serotonergic pathways. Brain Res Bull 100:44-54
Levin, Edward D; Cauley, Marty; Johnson, Joshua E et al. (2014) Prenatal dexamethasone augments the neurobehavioral teratology of chlorpyrifos: significance for maternal stress and preterm labor. Neurotoxicol Teratol 41:35-42
Pillai, Hari K; Fang, Mingliang; Beglov, Dmitri et al. (2014) Ligand binding and activation of PPAR? by Firemaster® 550: effects on adipogenesis and osteogenesis in vitro. Environ Health Perspect 122:1225-32
Bess, Amanda S; Ryde, Ian T; Hinton, David E et al. (2013) UVC-induced mitochondrial degradation via autophagy correlates with mtDNA damage removal in primary human fibroblasts. J Biochem Mol Toxicol 27:28-41
Dong, Wu; Macaulay, Laura J; Kwok, Kevin W H et al. (2013) Using whole mount in situ hybridization to examine thyroid hormone deiodinase expression in embryonic and larval zebrafish: a tool for examining OH-BDE toxicity to early life stages. Aquat Toxicol 132-133:190-9
Slotkin, Theodore A; Cooper, Ellen M; Stapleton, Heather M et al. (2013) Does thyroid disruption contribute to the developmental neurotoxicity of chlorpyrifos? Environ Toxicol Pharmacol 36:284-7
Clark, Bryan W; Cooper, Ellen M; Stapleton, Heather M et al. (2013) Compound- and mixture-specific differences in resistance to polycyclic aromatic hydrocarbons and PCB-126 among Fundulus heteroclitus subpopulations throughout the Elizabeth River estuary (Virginia, USA). Environ Sci Technol 47:10556-66
Garner, Lindsey V T; Brown, Daniel R; Di Giulio, Richard T (2013) Knockdown of AHR1A but not AHR1B exacerbates PAH and PCB-126 toxicity in zebrafish (Danio rerio) embryos. Aquat Toxicol 142-143:336-46
Zhao, Bin; Bohonowych, Jessica E S; Timme-Laragy, Alicia et al. (2013) Common commercial and consumer products contain activators of the aryl hydrocarbon (dioxin) receptor. PLoS One 8:e56860

Showing the most recent 10 out of 198 publications