Environmentally persistent free radicals (EPFRs) are formed on the surfaces of transition metal-containing particles by chemisorption of a molecular precursor and electron transfer from the organic to the metal, resulting in reduction of the metal and formation of the EPFR. Association of some radicals with the metal increases their stability and reduces their rate of reaction with oxygen such that they can persist for several days in the environment. EPFRs have been found associated with soot and fly-ash produced from the combustion of hazardous wastes and Superfund soils from a former wood-treatment facility contaminated with pentachlorophenol. EPFRs are formed in high concentrations in the thermal and cool-zones of incinerators and other thermal treatment devices for remediation of Superfund sites where they can also react, primarily by radical-radical recombination, to form polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). This project explores the origin and fate of EPFRs in thermal treatment devices through four Specific Aims: 1) Identify the mechanisms of EPFR formation and stabilization on transition metal surfaces;2) Determine the role of iron oxide-containing, combustion-generated particles in the formation of PCDD/F from chlorobenzenes and chlorophenols;3) Assess the effect of particle size on EPFR and PCDD/F formation for Fe2O3 - containing particles;and 4) Develop Reaction Kinetic Models of Surface-Mediated Formation of EPFRs and PCDD/Fs. This project provides the basic chemistry needed for the other projects in the Center. Collaboration with Project 6 will lead to understanding how the structure and chemical properties of particles affect EPFR formation and reactivity. It provides the background for study of formation and stabilization of EPFRs in contaminated Superfund soils in Project 3. It also provides the basic biological chemistry necessary to understand the cardiac and pulmonary dysfunction induced by inhalation of EPFRs demonstrated in Biomedical Projects 2, 4, and 5. Collaboration with the Oxidative Stress Core, Materials Core, and Computational Core has already shown EPFR-particle systems participate in long chain cycles in biological media producing hydroxyl radical that initiates oxidative stress in the exposed host.

Public Health Relevance

Environmentally persistent free radicals associated with Superfund particulate matter may be key intermediates in the formation of new molecular pollutants, as well as a source of the toxicity of the particles. Because they are bound to the particles, they are difficult to detect and analyze, and, as such, represent a previously unidentified environmental threat.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES013648-03
Application #
8097836
Study Section
Special Emphasis Panel (ZES1-SET-V (04))
Project Start
2009-08-15
Project End
Budget Start
2011-09-01
Budget End
2012-03-31
Support Year
3
Fiscal Year
2011
Total Cost
$142,273
Indirect Cost
Name
Louisiana State University A&M Col Baton Rouge
Department
Type
DUNS #
075050765
City
Baton Rouge
State
LA
Country
United States
Zip Code
70803
Reed, James R; Backes, Wayne L (2017) Physical Studies of P450-P450 Interactions: Predicting Quaternary Structures of P450 Complexes in Membranes from Their X-ray Crystal Structures. Front Pharmacol 8:28
Shrestha, Bishwas; You, Dahui; Saravia, Jordy et al. (2017) IL-4R? on dendritic cells in neonates and Th2 immunopathology in respiratory syncytial virus infection. J Leukoc Biol 102:153-161
Connick, John Patrick; Reed, James R; Backes, Wayne L (2017) Characterization of interactions among CYP1A2, CYP2B4, and NADPH-cytochrome P450 reductase: Identification of specific protein complexes. Drug Metab Dispos :
Patterson, Matthew C; DiTusa, Mark F; McFerrin, Cheri A et al. (2017) Formation of environmentally persistent free radicals (EPFRs) on ZnO at room temperature: Implications for the fundamental model of EPFR generation. Chem Phys Lett 670:5-10
Oyana, Tonny J; Lomnicki, Slawomir M; Guo, Chuqi et al. (2017) A Scalable Field Study Protocol and Rationale for Passive Ambient Air Sampling: A Spatial Phytosampling for Leaf Data Collection. Environ Sci Technol 51:10663-10673
Feld-Cook, Elisabeth E; Bovenkamp-Langlois, Lisa; Lomnicki, Slawo M (2017) Effect of Particulate Matter Mineral Composition on Environmentally Persistent Free Radical (EPFR) Formation. Environ Sci Technol 51:10396-10402
Deese, Rachel D; Weldeghiorghis, Thomas K; Haywood, Benjamin J et al. (2017) Influence of surfactants and humic acids on Artemia Franciscana's embryonic phospho-metabolite profile as measured by 31P NMR. Aquat Toxicol 186:188-195
Jaligama, Sridhar; Saravia, Jordy; You, Dahui et al. (2017) Regulatory T cells and IL10 suppress pulmonary host defense during early-life exposure to radical containing combustion derived ultrafine particulate matter. Respir Res 18:15
Chuang, Gin C; Xia, Huijing; Mahne, Sarah E et al. (2017) Environmentally Persistent Free Radicals Cause Apoptosis in HL-1 Cardiomyocytes. Cardiovasc Toxicol 17:140-149
Deese, Rachel D; LeBlanc, Madeline R; Cook, Robert L (2016) Surfactant toxicity to Artemia Franciscana and the influence of humic acid and chemical composition. Environ Chem 13:507-516

Showing the most recent 10 out of 97 publications