Superfund sites typically contain complex mixtures of pollutants including chlorinated hydrocarbons, metals, and other toxic organic and inorganic compounds. Remediation of these sites results in some exposure of the surrounding population to airborne soil dust contaminated with hazardous substances or PM emitted from the treatment devices. Our researchers have shown EPFRs are present in at least some contaminated Superfund soils and formed in high concentration during incineration and thermal treatment of hazardous substances. These PM-associated EPFRs exist for days in the atmosphere and may continually form in contaminated soils. Once inhaled, they initiate and participate in catalytic chain cycles generating ROS and persist in biological media long enough to lead to pulmonary and cardiovascular damage. Since our discovery of EPFRs associated with Superfund sites is relatively recent, little is known about their mechanisms of toxicity. The toxic responses are thought to be mediated through the generation of reactive oxygen species (ROS), with several studies implicating the P450 system in this process. The goal of this study is to examine the roles of the P450 and HO-1 systems in the response to EPFR exposure within an organism. The hypothesis being addressed is that EPFRs associated with ultrafine particles (1) directly inhibit cytochrome P450-mediated activities, (2) decrease the expression of several P450 enzymes and increase the expression of ROS-protective enzymes (such as HO-1), and (3) alter P450-dependent ROS production. We will determine if decrease in P450 expression is the result of a ROS-mediated alteration in NFkB expression, where NFkB activation leads to decreases in P450 and increases in HO-1 expression that serve to limit oxidative damage in exposed tissues. Taken together, these studies are expected to provide novel information regarding how the P450 and HO-1 systems respond to EPFR exposure and affect EPFR-mediated toxicity.

Public Health Relevance

Significant correlations between pulmonary and cardiovascular toxicity are associated with increased levels of airborne PM. Contaminated Superfund soils and PM emissions from thermal treatment of hazardous substance are especially toxic because they contain EPFRs of aromatic chlorinated hydrocarbons capable of generating reactive oxygen species. The goal of this study is to determine how drug and pollutant metabolism is affected by EPFR exposure, and to determine the mechanism of toxicity by these substances.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-SET-V (04))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Louisiana State University A&M Col Baton Rouge
Baton Rouge
United States
Zip Code
Reed, James R; Backes, Wayne L (2017) Physical Studies of P450-P450 Interactions: Predicting Quaternary Structures of P450 Complexes in Membranes from Their X-ray Crystal Structures. Front Pharmacol 8:28
Shrestha, Bishwas; You, Dahui; Saravia, Jordy et al. (2017) IL-4R? on dendritic cells in neonates and Th2 immunopathology in respiratory syncytial virus infection. J Leukoc Biol 102:153-161
Connick, John Patrick; Reed, James R; Backes, Wayne L (2017) Characterization of interactions among CYP1A2, CYP2B4, and NADPH-cytochrome P450 reductase: Identification of specific protein complexes. Drug Metab Dispos :
Patterson, Matthew C; DiTusa, Mark F; McFerrin, Cheri A et al. (2017) Formation of environmentally persistent free radicals (EPFRs) on ZnO at room temperature: Implications for the fundamental model of EPFR generation. Chem Phys Lett 670:5-10
Oyana, Tonny J; Lomnicki, Slawomir M; Guo, Chuqi et al. (2017) A Scalable Field Study Protocol and Rationale for Passive Ambient Air Sampling: A Spatial Phytosampling for Leaf Data Collection. Environ Sci Technol 51:10663-10673
Feld-Cook, Elisabeth E; Bovenkamp-Langlois, Lisa; Lomnicki, Slawo M (2017) Effect of Particulate Matter Mineral Composition on Environmentally Persistent Free Radical (EPFR) Formation. Environ Sci Technol 51:10396-10402
Deese, Rachel D; Weldeghiorghis, Thomas K; Haywood, Benjamin J et al. (2017) Influence of surfactants and humic acids on Artemia Franciscana's embryonic phospho-metabolite profile as measured by 31P NMR. Aquat Toxicol 186:188-195
Jaligama, Sridhar; Saravia, Jordy; You, Dahui et al. (2017) Regulatory T cells and IL10 suppress pulmonary host defense during early-life exposure to radical containing combustion derived ultrafine particulate matter. Respir Res 18:15
Chuang, Gin C; Xia, Huijing; Mahne, Sarah E et al. (2017) Environmentally Persistent Free Radicals Cause Apoptosis in HL-1 Cardiomyocytes. Cardiovasc Toxicol 17:140-149
Deese, Rachel D; LeBlanc, Madeline R; Cook, Robert L (2016) Surfactant toxicity to Artemia Franciscana and the influence of humic acid and chemical composition. Environ Chem 13:507-516

Showing the most recent 10 out of 97 publications