Environmentally persistent free radicals (EPFRs) have been found at levels 30 times higher in the pentachlorophenol (PCP) contaminated soils from a Superfund site - a former wood-treatment facility, than in pristine soil samples from the neighboring area. This finding is important due to the widespread use of PCP, potential of toxicity of EPFRs, potential exposure to these EFPRs due to wind blown dust from the site, their migration to and through ground waters as well as dermal exposure. Thus, a fundamental understanding of how the EPFRs can be formed in soils that have been contaminated with PCP is needed. Due to the complexity of soils, a number of pathways could account for the formation of EPFRs. This project will systematically explore the formation of EPFRs within PCP-contaminated soils through three Specific Aims: 1) Physically separate, chemically edit and characterize the organic and inorganic components of both contaminated and non-contaminated soils;2) Determine the main soil component(s) responsible for the formation of EPFRs in the contaminated soil;and 3) Utilize model systems based on the findings from Specific Aim-1 to gain insight into the natural 'in-situ'formation of radicals in the contaminated soil. This project is unique as it addresses """"""""real world"""""""" samples. This means that this project will act as a testing ground for the universality of some of the concepts derived for thermal EPFR formation pathways in Project 1, and in doing so, will act as a feedback loop to Project 1. This feedback loop will be further strengthened by collaborations with Project 6. Select samples from Aim-1, Aim-2, and Aim-3 will be provided to the biomedical Projects 2, 4 and 5 through the collaboration with the Materials Core. In addition to the samples, this project will provide the basic chemistry to understand any observed cardiac and pulmonary dysfunction induced by inhalation of these EPFR-containing samples.

Public Health Relevance

The potential for the formation of EPFRs from chlorinated phenols in-situ in contaminated soils is of great concern due to potential toxicity of EPFRs and exposure to these EPFRs via inhalation of air blown dust, dermal contact and ingestion via contaminated ground waters. Due to the complexity of soils, and the associated difficulty in analyzing them, EPFRs within soils represent a previously unidentified environmental threat.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES013648-04
Application #
8379659
Study Section
Special Emphasis Panel (ZES1-SET-V)
Project Start
Project End
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
4
Fiscal Year
2012
Total Cost
$172,258
Indirect Cost
$65,162
Name
Louisiana State University A&M Col Baton Rouge
Department
Type
DUNS #
075050765
City
Baton Rouge
State
LA
Country
United States
Zip Code
70803
Reed, James R; Backes, Wayne L (2017) Physical Studies of P450-P450 Interactions: Predicting Quaternary Structures of P450 Complexes in Membranes from Their X-ray Crystal Structures. Front Pharmacol 8:28
Shrestha, Bishwas; You, Dahui; Saravia, Jordy et al. (2017) IL-4R? on dendritic cells in neonates and Th2 immunopathology in respiratory syncytial virus infection. J Leukoc Biol 102:153-161
Connick, John Patrick; Reed, James R; Backes, Wayne L (2017) Characterization of interactions among CYP1A2, CYP2B4, and NADPH-cytochrome P450 reductase: Identification of specific protein complexes. Drug Metab Dispos :
Patterson, Matthew C; DiTusa, Mark F; McFerrin, Cheri A et al. (2017) Formation of environmentally persistent free radicals (EPFRs) on ZnO at room temperature: Implications for the fundamental model of EPFR generation. Chem Phys Lett 670:5-10
Oyana, Tonny J; Lomnicki, Slawomir M; Guo, Chuqi et al. (2017) A Scalable Field Study Protocol and Rationale for Passive Ambient Air Sampling: A Spatial Phytosampling for Leaf Data Collection. Environ Sci Technol 51:10663-10673
Feld-Cook, Elisabeth E; Bovenkamp-Langlois, Lisa; Lomnicki, Slawo M (2017) Effect of Particulate Matter Mineral Composition on Environmentally Persistent Free Radical (EPFR) Formation. Environ Sci Technol 51:10396-10402
Deese, Rachel D; Weldeghiorghis, Thomas K; Haywood, Benjamin J et al. (2017) Influence of surfactants and humic acids on Artemia Franciscana's embryonic phospho-metabolite profile as measured by 31P NMR. Aquat Toxicol 186:188-195
Jaligama, Sridhar; Saravia, Jordy; You, Dahui et al. (2017) Regulatory T cells and IL10 suppress pulmonary host defense during early-life exposure to radical containing combustion derived ultrafine particulate matter. Respir Res 18:15
Chuang, Gin C; Xia, Huijing; Mahne, Sarah E et al. (2017) Environmentally Persistent Free Radicals Cause Apoptosis in HL-1 Cardiomyocytes. Cardiovasc Toxicol 17:140-149
Deese, Rachel D; LeBlanc, Madeline R; Cook, Robert L (2016) Surfactant toxicity to Artemia Franciscana and the influence of humic acid and chemical composition. Environ Chem 13:507-516

Showing the most recent 10 out of 97 publications