The Computational Core will support the work of the center by calculating the properties and reactivities of models for metal oxide ultrafine particles (UFPs) and fine particles (FPs) suggested by experiment. The models of UFPs will include up to 20 metal atoms and a varying number of oxygen atoms. Reactions of these models with chlorinated benzenes and phenols to form environmentally persistent free radicals (EPFRs) and dioxins will be studied. The goal will be to provide a more complete understanding of the experimental results by identifying particularly important cluster geometries and sites on these clusters for comparison with the results for larger particles. The Core will utilize the computational facilities available at Louisiana State University and within the State of Louisiana. Louisiana State University's High Performance Computing group maintains approximately 21.5 TFIops of computing power spread over approximately 2000 cores. The Louisiana Optical Network Initiative's computing facilities provide approximately 45 TFIops of computing power spread over approximately 6000 cores. Standard software is available on these computers including Gaussian, GAMESS, NWChem, Wein, Charmm, CPMD, Gromacs, NAMD, PINY-MD, and VMD. The bulk of the computational support will use the ab initio programs Gaussian09 and CPMD, which can perform first principles calculations. Density functional calculations will use the aug-cc-pVDZ and LANL2DZ basis and selected functionals. Gaussian09 includes the MOB functional of Truhlar, which is optimized for use with transition metals. This functional, along with B3LYP and other selected hybrid functionals, will be used to optimize the geometric structures of metal oxide clusters and metal oxide-EPFR complexes. The calculated atomization and ionization energies, the electron affinities, and the charge and spin densities will be used to characterize the clusters of copper and iron oxides. The EPFR-cluster complexes formed by reaction with 2-monochlorophenol and 1,2-dichlorobenzene will be determined. The AEs of reaction, selected activation energies, and vibrational frequencies will be compared with experiment. Metal oxide clusters will be optimized for different spin states in order to determine the lowest energy spin state.

Public Health Relevance

The Computational Core will provide the first calculations of the thermodynamic and kinetic parameters of EPFR-forming reactions;the structures and electronic properties of the resulting EPFR-transition metal complexes;the structures and electronic properties of metal oxide nanoclusters;and the reaction kinetic parameters of some key, surface-mediated, dioxin-forming reactions.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-SET-V)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Louisiana State University A&M Col Baton Rouge
Baton Rouge
United States
Zip Code
Hijano, Diego R; Siefker, David T; Shrestha, Bishwas et al. (2018) Type I Interferon Potentiates IgA Immunity to Respiratory Syncytial Virus Infection During Infancy. Sci Rep 8:11034
Haywood, Benjamin J; White, John R; Cook, Robert L (2018) Investigation of an early season river flood pulse: Carbon cycling in a subtropical estuary. Sci Total Environ 635:867-877
Connick, J Patrick; Reed, James R; Backes, Wayne L (2018) Characterization of Interactions Among CYP1A2, CYP2B4, and NADPH-cytochrome P450 Reductase: Identification of Specific Protein Complexes. Drug Metab Dispos 46:197-203
Potter, Phillip M; Guan, Xia; Lomnicki, Slawomir M (2018) Synergy of iron and copper oxides in the catalytic formation of PCDD/Fs from 2-monochlorophenol. Chemosphere 203:96-103
Harmon, Ashlyn C; Hebert, Valeria Y; Cormier, Stephania A et al. (2018) Particulate matter containing environmentally persistent free radicals induces AhR-dependent cytokine and reactive oxygen species production in human bronchial epithelial cells. PLoS One 13:e0205412
Jaligama, Sridhar; Patel, Vivek S; Wang, Pingli et al. (2018) Radical containing combustion derived particulate matter enhance pulmonary Th17 inflammation via the aryl hydrocarbon receptor. Part Fibre Toxicol 15:20
Dugas, Tammy R (2018) Unraveling mechanisms of toxicant-induced oxidative stress in cardiovascular disease. Curr Opin Toxicol 7:1-8
Feld-Cook, Elisabeth E; Bovenkamp-Langlois, Lisa; Lomnicki, Slawo M (2017) Effect of Particulate Matter Mineral Composition on Environmentally Persistent Free Radical (EPFR) Formation. Environ Sci Technol 51:10396-10402
Chuang, Gin C; Xia, Huijing; Mahne, Sarah E et al. (2017) Environmentally Persistent Free Radicals Cause Apoptosis in HL-1 Cardiomyocytes. Cardiovasc Toxicol 17:140-149
Jaligama, Sridhar; Saravia, Jordy; You, Dahui et al. (2017) Regulatory T cells and IL10 suppress pulmonary host defense during early-life exposure to radical containing combustion derived ultrafine particulate matter. Respir Res 18:15

Showing the most recent 10 out of 108 publications