Interdisciplinary research is a major emphasis of modern biomedical and physical science efforts, and enabling interdisciplinary research is a major part of the NIH Roadmap. Biomedically-oriented, environmental interdisciplinary research is the theme of this Center/Program, and as such, requires a cross-cutting training program in support of the Superfund Center's educational activities. The role of the Training Core is to provide an Infrastructure and environment that promotes the development of post-doctoral and graduate students in the highly interdisciplinary field of surfaces of particulate matter. Importantly, the Training Core has Aims that focus on recruiting and multidisciplinary education of graduate and postdoctoral students. Proposal Objectives that will allow us to achieve the Aims include: offer a support staff that handles dally operations of the Training Core;foster interactions between faculty and participants;manage the Training Core via faculty leadership and involvement in the Core aims and objectives;establish an aggressive recruiting program for prospective post-doctoral fellows and graduate students through our on-going research programs, and faculty/student seminars at feeder schools, which include a group of Historically Black Colleges and Universities (HBCUs);recruit new graduate students from our existing PhD programs that are successful with recruiting and retention of scientists from all groups;increase postdoctoral and graduate student team-playing, self-motivation/reliance and breadth of research knowledge/skills by use of Superfund Teams;provide a set of core graduate courses for students;and augment the cross-interdisciplinary training through the use of a research rotation program. The Training Core of this Superfund Proposal will result in the training of students pursuing a doctor of philosophy degree or those furthering their post-graduate education in the highly interdisciplinary area of particle-associated air pollution and subsequent health effects of said pollution as studied by biomedical researchers. Students from diverse ethnic, gender, and scientific back grounds will be cross-trained so that they will become valuable contributors to the environmental workforce.

Public Health Relevance

The proposed training core builds upon the research activities of LSU and the LSU Health Sciences Center (LSU-HSC) and creates new educational opportunities for graduate and postdoctoral students and researchers. Students will gain a holistic, interdisciplinary perspective from which to analyze Superfund-related environmental issues.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES013648-05
Application #
8451503
Study Section
Special Emphasis Panel (ZES1-SET-V)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
5
Fiscal Year
2013
Total Cost
$95,052
Indirect Cost
$34,010
Name
Louisiana State University A&M Col Baton Rouge
Department
Type
DUNS #
075050765
City
Baton Rouge
State
LA
Country
United States
Zip Code
70803
Hijano, Diego R; Siefker, David T; Shrestha, Bishwas et al. (2018) Type I Interferon Potentiates IgA Immunity to Respiratory Syncytial Virus Infection During Infancy. Sci Rep 8:11034
Haywood, Benjamin J; White, John R; Cook, Robert L (2018) Investigation of an early season river flood pulse: Carbon cycling in a subtropical estuary. Sci Total Environ 635:867-877
Connick, J Patrick; Reed, James R; Backes, Wayne L (2018) Characterization of Interactions Among CYP1A2, CYP2B4, and NADPH-cytochrome P450 Reductase: Identification of Specific Protein Complexes. Drug Metab Dispos 46:197-203
Potter, Phillip M; Guan, Xia; Lomnicki, Slawomir M (2018) Synergy of iron and copper oxides in the catalytic formation of PCDD/Fs from 2-monochlorophenol. Chemosphere 203:96-103
Harmon, Ashlyn C; Hebert, Valeria Y; Cormier, Stephania A et al. (2018) Particulate matter containing environmentally persistent free radicals induces AhR-dependent cytokine and reactive oxygen species production in human bronchial epithelial cells. PLoS One 13:e0205412
Jaligama, Sridhar; Patel, Vivek S; Wang, Pingli et al. (2018) Radical containing combustion derived particulate matter enhance pulmonary Th17 inflammation via the aryl hydrocarbon receptor. Part Fibre Toxicol 15:20
Dugas, Tammy R (2018) Unraveling mechanisms of toxicant-induced oxidative stress in cardiovascular disease. Curr Opin Toxicol 7:1-8
Feld-Cook, Elisabeth E; Bovenkamp-Langlois, Lisa; Lomnicki, Slawo M (2017) Effect of Particulate Matter Mineral Composition on Environmentally Persistent Free Radical (EPFR) Formation. Environ Sci Technol 51:10396-10402
Chuang, Gin C; Xia, Huijing; Mahne, Sarah E et al. (2017) Environmentally Persistent Free Radicals Cause Apoptosis in HL-1 Cardiomyocytes. Cardiovasc Toxicol 17:140-149
Jaligama, Sridhar; Saravia, Jordy; You, Dahui et al. (2017) Regulatory T cells and IL10 suppress pulmonary host defense during early-life exposure to radical containing combustion derived ultrafine particulate matter. Respir Res 18:15

Showing the most recent 10 out of 108 publications