Environmental exposures, like those occurring at Superfund sites and Brownfields in Rhode Island, nvolve complex mixtures of hazardous chemicals. We have established a novel co-exposure paradigm to expand our mechanistic understanding of testicular injury resulting from such complex exposures. Model esticular toxicants are used as functional probes of the interacting cell types within the seminiferous epithelium: 2,5-hexanedione, carbendazim, and mono-(2-ethylhexyl) phthalate target Sertoli cells, and xrradiation and 1,2-dibromo-3-chloropropane target germ cells. Using the adult rat as the animal model, the co-exposure paradigm combines subacute exposure to 2,5-hexanedione with acute exposure to another Sertoli cell or germ cell toxicant. In the initial funding period, dose-response behavior and phenotypic alterations were determined for the testicular toxicants. Compared with acute toxicant exposure alone, the co-exposure paradigm attenuated or enhanced the germ cell apoptotic response, the final common pathway of testicular injury, depending on dose and cellular target. Strikingly, the gene array analysis supports a positive correlation between a muted or exaggerated gene expression response and the extent of co-exposure attenuation or enhancement of germ cell apoptosis. These exciting results provide a phenotypic anchor for further molecular analyses, and underscore the ability of the co-exposure paradigm to provide new insight into the testicular response to complex exposures. In the next funding period, laser capture microdissection will be used for cell-type and stage-specific enrichment of mRNA and protein from the seminiferous epithelium, extending the co-exposure paradigm to low doses. In addition, novel sperm biomarkers of effect will be identified for chronic cell-type specific testicular injury. The work will be guided by the following working hypotheses: 1) co-exposure attenuation or enhancement of toxicity depends upon dose, targeting, and the extent of molecular perturbation, and 2) the testicular response to cell type specific toxicant exposure can be identified through molecular analysis of sperm. This project contributes to the Molecular Epidemiology &Reproduction Interdisciplinary Focus Area, and identifies principles of paracrine-dependent co-exposure-induced toxicity that are broadly applicable to many organ systems.

Public Health Relevance

The over-arching goal of this Superfund Basic Research Program is to address health concerns, and to design novel remediation techniques, related to mixed exposures arising from contaminated lands and buildings, using Rhode Island as a model for appropriate research, educational, and training interventions. Project 1 has developed a novel co-exposure model of testicular toxicant-induced injury that provides new insight into organ system susceptibility to environmental exposures.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES013660-09
Application #
8451572
Study Section
Special Emphasis Panel (ZES1-LKB-D)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
9
Fiscal Year
2013
Total Cost
$230,536
Indirect Cost
$95,697
Name
Brown University
Department
Type
DUNS #
001785542
City
Providence
State
RI
Country
United States
Zip Code
02912
Zhu, Wenpeng; von dem Bussche, Annette; Yi, Xin et al. (2016) Nanomechanical mechanism for lipid bilayer damage induced by carbon nanotubes confined in intracellular vesicles. Proc Natl Acad Sci U S A 113:12374-12379
Dere, Edward; Wilson, Shelby K; Anderson, Linnea M et al. (2016) From the Cover: Sperm Molecular Biomarkers Are Sensitive Indicators of Testicular Injury following Subchronic Model Toxicant Exposure. Toxicol Sci 153:327-40
Gonzalez, Sarah T; Remick, Dylan; Creton, Robbert et al. (2016) Effects of embryonic exposure to polychlorinated biphenyls (PCBs) on anxiety-related behaviors in larval zebrafish. Neurotoxicology 53:93-101
Pennell, Kelly G; Scammell, Madeleine K; McClean, Michael D et al. (2016) Field data and numerical modeling: A multiple lines of evidence approach for assessing vapor intrusion exposure risks. Sci Total Environ 556:291-301
Verginelli, Iason; Yao, Yijun; Wang, Yue et al. (2016) Estimating the oxygenated zone beneath building foundations for petroleum vapor intrusion assessment. J Hazard Mater 312:84-96
Lovato, Ava K; Creton, Robbert; Colwill, Ruth M (2016) Effects of embryonic exposure to polychlorinated biphenyls (PCBs) on larval zebrafish behavior. Neurotoxicol Teratol 53:1-10
Kuempel, Eileen D; Jaurand, Marie-Claude; Møller, Peter et al. (2016) Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans. Crit Rev Toxicol :1-58
Holden, Patricia A; Gardea-Torresdey, Jorge L; Klaessig, Fred et al. (2016) Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials. Environ Sci Technol 50:6124-45
Dere, E; Huse, S; Hwang, K et al. (2016) Intra- and inter-individual differences in human sperm DNA methylation. Andrology 4:832-42
Wang, Zhongying; Zhu, Wenpeng; Qiu, Yang et al. (2016) Biological and environmental interactions of emerging two-dimensional nanomaterials. Chem Soc Rev 45:1750-80

Showing the most recent 10 out of 176 publications