Hexavalent chromium (chromate) is a potent human carcinogen that is present in the workplace of about 500,000 U.S. workers and at several hundred Superfund sites. Drinking water contamination and particulate ambient pollution are two other significant sources of human exposure to Cr-6. Assessment of individual doses of Cr-6 would greatly improve understanding of risks associated with environmental contamination and alleviate public concerns about the extent of the actual human exposures. Because Cr-6 is reduced in human body to Cr-3, measurements of total Cr levels in biological specimens are unable to differentiate between exposures to carcinogenic Cr-6 and ubiquitous forms of nontoxic Cr-3. Thus, the main approach to the estimation of human exposure to toxic Cr compounds should be based on the analysis of specific biological changes caused by Cr-6. Cr-DNA adducts are a unique form of DMA modifications produced by Cr-6 in human cells and therefore, they offer a potential to serve as highly specific indicators of individual doses of Cr-6. Our recent findings demonstrated that cellular reduction of Cr-6 by vitamin C was a principal route to high mutagenicity and genotoxicity of this metal. These results led to the uncertainty in the development of Cr-6 biomarkers as we poorly understand which Cr-DNA adduct(s) are most important toxicologically in cells containing vitamin C. The main goal of this project is to identify the most potent mutagenic and genotoxic Cr-DNA adducts arising from reductive metabolism of Cr-6 by cellular ascorbate.
Three Specific Aims will examine (i) the formation of mutagenic Cr-DNA adducts in human lung cells, (ii) the relationship between mutagenicity and genotoxicity of bulky Cr-DNA adducts, and (iii) mechanisms of hypersensitivity of ascorbatesupplemented cells to Cr-6 compounds. The results of proposed studies are expected to provide the basis for the development of mechanistically important, specific biodosimeters of human exposure to different chemical and physical forms of hexavalent chromium.

Public Health Relevance

The over-arching goal of this Superfund Basic Research Program is to address health concerns, and to design novel remediation techniques, related to mixed exposures arising from contaminated lands and buildings, using Rhode Island as a model for appropriate research, educational, and training interventions.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-LKB-D)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brown University
United States
Zip Code
Qiu, Yang; Guo, Fei; Hurt, Robert et al. (2014) Explosive thermal reduction of graphene oxide-based materials: mechanism and safety implications. Carbon N Y 72:215-223
Shen, Rui; Suuberg, Eric M (2014) Analytical Quantification of the Subslab Volatile Organic Vapor Concentration from a Non-uniform Source. Environ Model Softw 54:1-8
Clift, Danielle; Richendrfer, Holly; Thorn, Robert J et al. (2014) High-throughput analysis of behavior in zebrafish larvae: effects of feeding. Zebrafish 11:455-61
Qin, Xiaoli; Liu, Xiaorui; Shan, Bin et al. (2014) Inhibition of eIF5A results in aberrant uterine natural killer cell function and embryo loss in mice. Am J Reprod Immunol 71:229-40
Rodd, April L; Creighton, Megan A; Vaslet, Charles A et al. (2014) Effects of surface-engineered nanoparticle-based dispersants for marine oil spills on the model organism Artemia franciscana. Environ Sci Technol 48:6419-27
Velazquez-Jimenez, Litza Halla; Hurt, Robert H; Matos, Juan et al. (2014) Zirconium-carbon hybrid sorbent for removal of fluoride from water: oxalic acid mediated Zr(IV) assembly and adsorption mechanism. Environ Sci Technol 48:1166-74
Catlin, Natasha R; Huse, Susan M; Boekelheide, Kim (2014) The stage-specific testicular germ cell apoptotic response to low-dose radiation and 2,5-hexanedione combined exposure. II: qRT-PCR array analysis reveals dose dependent adaptive alterations in the apoptotic pathway. Toxicol Pathol 42:1229-37
Catlin, Natasha R; Huse, Susan M; Boekelheide, Kim (2014) The stage-specific testicular germ cell apoptotic response to low-dose X-irradiation and 2,5-hexanedione combined exposure. I: Validation of the laser capture microdissection method for qRT-PCR array application. Toxicol Pathol 42:1221-8
Shen, Rui; Pennell, Kelly G; Suuberg, Eric M (2014) Analytical modeling of the subsurface volatile organic vapor concentration in vapor intrusion. Chemosphere 95:140-9
Sharma, Surendra (2014) Natural killer cells and regulatory T cells in early pregnancy loss. Int J Dev Biol 58:219-29

Showing the most recent 10 out of 126 publications