Recognition, rehabilitation and reuse of Superfund sites in Rhode Island are complex technical and practical problems requiring a multidisciplinary approach. This SBRP brings together faculty with basic and applied scientific expertise in engineering, biomedical research, and social sciences who will work together with the Rhode Island Departments of Health and Environmental Management. The faculty and state administrators will direct their efforts towards solving environmental health, management, and communication issues surrounding local contaminated sites. This interdisciplinary partnership between an academic institution and local government agencies provides a unique educational opportunity for undergraduate and graduate students at Brown University.
The Specific Aims are: 1) To develop and implement a sequence of didactic courses and laboratory experiences related to environmental contaminants, human health effects, and rehabilitation of Brownfield and Superfund sites. 2) To organize interdisciplinary research teams of undergraduates, graduate students, and postdoctoral research associates based on the biomedical and engineering research projects supported by this Superfund Basic Research Grant. 3) To provide opportunities for field work, community outreach and communication, and other enrichment activities for undergraduate and graduate students. 4) To develop a scholarly concentration in environmental health for medical students at The Warren Alpert School of Medicine at Brown University and to develop a Master of Science Program in Environmental Health and Engineering. 5) To monitor, evaluate, and revise this interdisciplinary educational and research program.

Public Health Relevance

The over-arching goal of this Superfund Basic Research Program is to address health concerns and to design novel remediation techniques related to mixed exposures arising from contaminated lands and buildings, using Rhode Island as a model for appropriate research, educational, and training interventions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES013660-09
Application #
8451588
Study Section
Special Emphasis Panel (ZES1-LKB-D)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
9
Fiscal Year
2013
Total Cost
$166,926
Indirect Cost
$71,348
Name
Brown University
Department
Type
DUNS #
001785542
City
Providence
State
RI
Country
United States
Zip Code
02912
Zhu, Wenpeng; von dem Bussche, Annette; Yi, Xin et al. (2016) Nanomechanical mechanism for lipid bilayer damage induced by carbon nanotubes confined in intracellular vesicles. Proc Natl Acad Sci U S A 113:12374-12379
Dere, Edward; Wilson, Shelby K; Anderson, Linnea M et al. (2016) From the Cover: Sperm Molecular Biomarkers Are Sensitive Indicators of Testicular Injury following Subchronic Model Toxicant Exposure. Toxicol Sci 153:327-40
Gonzalez, Sarah T; Remick, Dylan; Creton, Robbert et al. (2016) Effects of embryonic exposure to polychlorinated biphenyls (PCBs) on anxiety-related behaviors in larval zebrafish. Neurotoxicology 53:93-101
Pennell, Kelly G; Scammell, Madeleine K; McClean, Michael D et al. (2016) Field data and numerical modeling: A multiple lines of evidence approach for assessing vapor intrusion exposure risks. Sci Total Environ 556:291-301
Verginelli, Iason; Yao, Yijun; Wang, Yue et al. (2016) Estimating the oxygenated zone beneath building foundations for petroleum vapor intrusion assessment. J Hazard Mater 312:84-96
Lovato, Ava K; Creton, Robbert; Colwill, Ruth M (2016) Effects of embryonic exposure to polychlorinated biphenyls (PCBs) on larval zebrafish behavior. Neurotoxicol Teratol 53:1-10
Kuempel, Eileen D; Jaurand, Marie-Claude; Møller, Peter et al. (2016) Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans. Crit Rev Toxicol :1-58
Holden, Patricia A; Gardea-Torresdey, Jorge L; Klaessig, Fred et al. (2016) Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials. Environ Sci Technol 50:6124-45
Dere, E; Huse, S; Hwang, K et al. (2016) Intra- and inter-individual differences in human sperm DNA methylation. Andrology 4:832-42
Wang, Zhongying; Zhu, Wenpeng; Qiu, Yang et al. (2016) Biological and environmental interactions of emerging two-dimensional nanomaterials. Chem Soc Rev 45:1750-80

Showing the most recent 10 out of 176 publications