Airborne PCBs are those that have higher vapor pressures, lower chlorination, and are substrates for metabolic activation. We hypothesize that lower chlorinated airborne PCBs and their natural electrophilic metabolites interact with DNA and DNA-associated proteins and/or initiate oxidative events that alter the intracellular redox environment, thereby compromising cellular structures and functions. Our data show that PCBs are initiators in rat liver and that PCB3 (4-chlorobiphenyl) induces mutations in the liver and possibly lung of transgenic BigBlue rats after ip injection. Also, PCB3 metabolites cause various, compound-specific types of genotoxic damage in cells in culture. We have shown that prostaglandin synthase and myeloperoxidase bioactivate dihydroxy-PCBs and that the PCB-quinones can react with nucleophiles like GSH by Michael addition or a substitution reaction with dechlorination. We have also observed, for the first time, a PCB semiquinone radical in cells. We therefore propose to extend our studies to: 1) Examine the mechanisms of PCB genotoxicity by comparing nuclear vs. mitochondrial effects and elucidating PCB interactions with DNA-associated protein;2) Investigate interactions of airborne PCBs and their metabolites with telomeres and telomerase;3) Determine the reactions of PCB-semiquinone radicals and how factors, such as conjugation with thiols, affect this reactivity;4) Analyze the genotoxicity of airborne PCBs after inhalation exposure and explore mechanisms to ameliorate/mediate against those effects. Jointly these studies may explain which and how PCBs are genotoxic, which organs, subcellular structures, and macromolecules are the targets, the mechanisms of these reactions, and whether these upset the delicate redox balance of the natural environment of the cell. Emphasis is placed on the kinetics and consequences of inhalation exposure to airborne PCBs. These data and dietary studies in the last Aim will provide a scientific basis for risk assessment and advice for stakeholders with the ultimate goal to protect highly-exposed individuals and populations.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES013661-05
Application #
7813124
Study Section
Special Emphasis Panel (ZES1-LWJ-M (O1))
Program Officer
Henry, Heather F
Project Start
2005-04-01
Project End
2015-03-31
Budget Start
2010-04-15
Budget End
2011-03-31
Support Year
5
Fiscal Year
2010
Total Cost
$3,055,625
Indirect Cost
Name
University of Iowa
Department
Public Health & Prev Medicine
Type
Schools of Public Health
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Li, Xueshu; Holland, Erika B; Feng, Wei et al. (2018) Authentication of synthetic environmental contaminants and their (bio)transformation products in toxicology: polychlorinated biphenyls as an example. Environ Sci Pollut Res Int 25:16508-16521
Sethi, Sunjay; Keil, Kimberly P; Lein, Pamela J (2018) 3,3'-Dichlorobiphenyl (PCB 11) promotes dendritic arborization in primary rat cortical neurons via a CREB-dependent mechanism. Arch Toxicol 92:3337-3345
Parker, Victoria S; Squirewell, Edwin J; Lehmler, Hans-Joachim et al. (2018) Hydroxylated and sulfated metabolites of commonly occurring airborne polychlorinated biphenyls inhibit human steroid sulfotransferases SULT1E1 and SULT2A1. Environ Toxicol Pharmacol 58:196-201
Mattes, Timothy E; Ewald, Jessica M; Liang, Yi et al. (2018) PCB dechlorination hotspots and reductive dehalogenase genes in sediments from a contaminated wastewater lagoon. Environ Sci Pollut Res Int 25:16376-16388
Uwimana, Eric; Ruiz, Patricia; Li, Xueshu et al. (2018) HUMAN CYP2A6, CYP2B6 AND CYP2E1 ATROPSELECTIVELY METABOLIZE POLYCHLORINATED BIPHENYLS TO HYDROXYLATED METABOLITES. Environ Sci Technol :
Rodriguez, Eric A; Vanle, Brigitte C; Doorn, Jonathan A et al. (2018) Hydroxylated and sulfated metabolites of commonly observed airborne polychlorinated biphenyls display selective uptake and toxicity in N27, SH-SY5Y, and HepG2 cells. Environ Toxicol Pharmacol 62:69-78
Hou, Xingwang; Yu, Miao; Liu, Aifeng et al. (2018) Biotransformation of tetrabromobisphenol A dimethyl ether back to tetrabromobisphenol A in whole pumpkin plants. Environ Pollut 241:331-338
Xiao, Xin; Chen, Baoliang; Chen, Zaiming et al. (2018) Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. Environ Sci Technol 52:5027-5047
Herkert, Nicholas J; Jahnke, Jacob C; Hornbuckle, Keri C (2018) Emissions of Tetrachlorobiphenyls (PCBs 47, 51, and 68) from Polymer Resin on Kitchen Cabinets as a Non-Aroclor Source to Residential Air. Environ Sci Technol 52:5154-5160
P?n?íková, Kate?ina; Svržková, Lucie; Strapá?ová, Simona et al. (2018) In vitro profiling of toxic effects of prominent environmental lower-chlorinated PCB congeners linked with endocrine disruption and tumor promotion. Environ Pollut 237:473-486

Showing the most recent 10 out of 298 publications