Site assessment is a key aspect of understanding the risks of and planning remediation of hazardous waste sites. Budget constraints, site heterogeneity and uncertainties in assessing exposure complicate assessment. The ideal approach also varies according to the purpose. From a regulatory perspective, goals include general characterization of a site, estimating mean levels for risk assessment, planning remediation, and assessing compliance. In contrast, environmental epidemiologists are interested in estimating individual exposures as accurately as possible to study associations with health outcomes. The objective of this project is to provide statistical design and analysis tools to improve the accuracy and reliability of site and exposure assessment for Superfund hazardous waste sites. Our approach is based on statistical modeling, along with optimal design considerations that maximize prediction accuracy while minimizing cost and accounting for practical considerations. Building on the basic spatial kriging model, our spatial model-based approach to design and analysis will be compared to existing design-based approaches that do not account for spatial correlation. We will extend these to complicated real-world settings, including the use of previous targeted samples and non-detect, proxy and composite samples, which may allow a reduction in sampling costs. At the megasite scale, we will relate soil concentrations to biomarker levels in the Tar Creek Superfund site, and develop spatial measurement error models for relating environmental concentrations to exposure as measured by biomarkers;thus, accounting for incomplete environmental sampling. We will clarify under what circumstances a spatial model-based approach provides real benefits in practice, reducing cost and uncertainty. To make spatial-model based methods accessible to the site-assessment community, we will develop software tools for use by EPA and site professionals.

Public Health Relevance

This project will develop statistical models designed to aid site assessors in parsimoniously characterizing a contaminated waste site. We will work with data from contaminated communities to maintain relevance to Superfund sites. We will also develop software for regulatory and academics who evaluate such sites.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES016454-04
Application #
8451461
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
4
Fiscal Year
2013
Total Cost
$81,692
Indirect Cost
$10,511
Name
Harvard University
Department
Type
DUNS #
149617367
City
Boston
State
MA
Country
United States
Zip Code
02115
Burris, Heather H; Baccarelli, Andrea A; Motta, Valeria et al. (2014) Association between length of gestation and cervical DNA methylation of PTGER2 and LINE 1-HS. Epigenetics 9:1083-91
Kile, Molly L; Rodrigues, Ema G; Mazumdar, Maitreyi et al. (2014) A prospective cohort study of the association between drinking water arsenic exposure and self-reported maternal health symptoms during pregnancy in Bangladesh. Environ Health 13:29
Claus Henn, Birgit; Coull, Brent A; Wright, Robert O (2014) Chemical mixtures and children's health. Curr Opin Pediatr 26:223-9
Kile, Molly L; Houseman, E Andres; Baccarelli, Andrea A et al. (2014) Effect of prenatal arsenic exposure on DNA methylation and leukocyte subpopulations in cord blood. Epigenetics 9:774-82
Gleason, Kelsey; Shine, James P; Shobnam, Nadia et al. (2014) Contaminated turmeric is a potential source of lead exposure for children in rural Bangladesh. J Environ Public Health 2014:730636
Karwowski, Mateusz P; Just, Allan C; Bellinger, David C et al. (2014) Maternal iron metabolism gene variants modify umbilical cord blood lead levels by gene-environment interaction: a birth cohort study. Environ Health 13:77
Braun, Joseph M; Wright, Rosalind J; Just, Allan C et al. (2014) Relationships between lead biomarkers and diurnal salivary cortisol indices in pregnant women from Mexico City: a cross-sectional study. Environ Health 13:50
Fossati, Serena; Baccarelli, Andrea; Zanobetti, Antonella et al. (2014) Ambient particulate air pollution and microRNAs in elderly men. Epidemiology 25:68-78
Lee, Seunggeung; Abecasis, Gonçalo R; Boehnke, Michael et al. (2014) Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet 95:5-23
Orenstein, Sara T C; Thurston, Sally W; Bellinger, David C et al. (2014) Prenatal organochlorine and methylmercury exposure and memory and learning in school-age children in communities near the New Bedford Harbor Superfund site, Massachusetts. Environ Health Perspect 122:1253-9

Showing the most recent 10 out of 30 publications