Polycyclic Aromatic Hydrocarbons (PAHs), re-emerging environmental pollutants of concern, found at Superfund sites and urban settings, are formed in the burning of carbon-based energy sources, e.g., diesel, gasoline, coal, petroleum and in cooking or tobacco smoke. Increasing energy needs world-wide contribute to PAH production, resulting in human exposures. This new Superfund Basic Research Program brings together a multi-disciplinary team, from an academic institution and a National Laboratory, with years of experience in PAHs and environmental health issues. The investigators designed 6 Research Projects that are innovative and exciting, and that explore new mechanisms of PAHs and their impact on human health. The Projects focus on 1) PAHs in skin and transplacental cancer and prevention approaches;2) the construction of the first PAH PBPK model using both mice and humans;3) adverse effects on development in a versatile model (zebrafish);4) the development of passive sampling devices, deployed at Superfund sites, testable in the zebrafish model;5) the development of analytical methods for tracking another emerging potential health threat, nanomaterials, and 6) determining PAH composition and atmospheric deposition (in China, coal-fired energy plants and automobile use is exploding) and the effects of PAHs """"""""aging"""""""" in transport to the U.S.;the focus will be on highly exposed populations (Chinese and Native Americans in the U.S.). The Research Support Cores are the Statistics and Bioinformatics Core, and the Analytical Chemistry Core, which provide a continuum critical to success in data storage, analysis and sharing, and use of PAH standards and analysis. Common use of the Cores by Projects ensures high reliability and consistency. Personnel in the Research Translation Core (RTC), directed by an M.D., M.P.H., have years of experience in public health and serve as a conduit between research and populations with exposure concerns. The Community Outreach Core, tied closely to the RTC, has experience with Tribal Communities concerned about PAH exposure, and the Core has developed creative venues for communication of scientific results with the general public. Finally, the administrative team has a long history of successful management of NIEHS multi-investigator grants and acquisition of strong institutional support. The innovative nature of these Projects, the high significance of PAHs, the tight integration, the shared resources and approaches, the demonstrated ability to distill scientific studies to impacted populations and the long history of successful administration provide this new SBRP with what we trust the reviewers will judge to be many exciting and important strengths with high innovation in the approaches taken.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-LKB-D (S8))
Program Officer
Carlin, Danielle J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon State University
Organized Research Units
United States
Zip Code
Knecht, Andrea L; Truong, Lisa; Simonich, Michael T et al. (2016) Developmental benzo[a]pyrene (B[a]P) exposure impacts larval behavior and impairs adult learning in zebrafish. Neurotoxicol Teratol :
Bugel, Sean M; Wehmas, Leah C; La Du, Jane K et al. (2016) Phenotype anchoring in zebrafish reveals a potential role for matrix metalloproteinases (MMPs) in tamoxifen's effects on skin epithelium. Toxicol Appl Pharmacol 296:31-41
Sadler, Natalie C; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo et al. (2016) Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development. Drug Metab Dispos 44:984-91
Haggard, Derik E; Noyes, Pamela D; Waters, Katrina M et al. (2016) Phenotypically anchored transcriptome profiling of developmental exposure to the antimicrobial agent, triclosan, reveals hepatotoxicity in embryonic zebrafish. Toxicol Appl Pharmacol 308:32-45
Bugel, Sean M; Bonventre, Josephine A; Tanguay, Robert L (2016) Comparative Developmental Toxicity of Flavonoids Using an Integrative Zebrafish System. Toxicol Sci 154:55-68
Paulik, L Blair; Smith, Brian W; Bergmann, Alan J et al. (2016) Passive samplers accurately predict PAH levels in resident crayfish. Sci Total Environ 544:782-91
Tidwell, Lane G; Allan, Sarah E; O'Connell, Steven G et al. (2016) PAH and OPAH Flux during the Deepwater Horizon Incident. Environ Sci Technol 50:7489-97
Garcia, Gloria R; Noyes, Pamela D; Tanguay, Robert L (2016) Advancements in zebrafish applications for 21st century toxicology. Pharmacol Ther 161:11-21
Zhang, Guozhu; Roell, Kyle R; Truong, Lisa et al. (2016) A data-driven weighting scheme for multivariate phenotypic endpoints recapitulates zebrafish developmental cascades. Toxicol Appl Pharmacol 314:109-117
Truong, Lisa; Bugel, Sean M; Chlebowski, Anna et al. (2016) Optimizing multi-dimensional high throughput screening using zebrafish. Reprod Toxicol 65:139-147

Showing the most recent 10 out of 134 publications