Polycyclic aromatic hydrocarbons (PAHs), derived largely from the combustion of fossil fuels, are widespread environmental contaminants that have been shown to cross the placenta. Therefore, developmental exposure to PAHs has the potential to cause adverse health outcomes. Despite the potential developmental risk posed from individual or mixtures of PAHs, there are substantial information gaps regarding structure-developmental toxicity relationships and, most importantly, the mechanism underlying PAH toxicity remains largely unknown. It is widely believed that toxicity from PAHs is initiated by binding to the aryl hydrocarbon receptor (AHR) and subsequent cytochrome P4501A (CYP1A) induction;however, recent studies have suggested that a subset of PAHs produce developmental toxicity independent of AHR. The difficulty in elucidating mechanisms of developmental toxicity can be largely attributed to the limitations of current vertebrate models. Recent advances in the fields of genomics, chemistry, genetics, bioinformatics and rapid-throughput screening have provided powerful new approaches for the study of complex biological processes. Global transcriptional analysis coupled with comparative bioinformatics now allows for the discovery of gene-gene interactions which are necessary to produce toxicity. Complex biological responses can be dissected with the aid of rapid-throughput phenotypic screens of small molecule libraries. The well-known advantages of the zebrafish embryo have made this model amenable to all of the above approaches. We are just beginning to realize the enormous contribution that zebrafish will make as part of an integrative approach to improve human health. This proposal specifically seeks to use zebrafish to define the mechanism of PAH developmental toxicity. Our underlying hypothesis is that PAHs produce developmental toxicity by AHR-dependent and AHR-independent mechanisms, depending on the structure of the PAH. We will test this hypothesis in three Specific Aims: 1) directly determine the role of the AHR in mediating the developmental toxicity of PAHs;2) define early developmental biomarkers of PAH exposure;3 use chemical genetics to identify cellular targets that modulate PAH developmental toxicity. Successful completion of the proposed experiments will result in the identification of developmental responses to PAHs at the molecular and cellular level, and determination of the role of responsive genes in toxicity. For the first time we will identify pathways that are necessary for PAH developmental toxicity. The identification of these cellular targets has the potential to unravel gene-environmental interactions that will help explain individual susceptibility to PAHs.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES016465-04
Application #
8375916
Study Section
Special Emphasis Panel (ZES1-LKB-D)
Project Start
Project End
2013-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
4
Fiscal Year
2012
Total Cost
$301,499
Indirect Cost
$94,410
Name
Oregon State University
Department
Type
DUNS #
053599908
City
Corvallis
State
OR
Country
United States
Zip Code
97339
Knecht, Andrea L; Truong, Lisa; Simonich, Michael T et al. (2016) Developmental benzo[a]pyrene (B[a]P) exposure impacts larval behavior and impairs adult learning in zebrafish. Neurotoxicol Teratol :
Bugel, Sean M; Wehmas, Leah C; La Du, Jane K et al. (2016) Phenotype anchoring in zebrafish reveals a potential role for matrix metalloproteinases (MMPs) in tamoxifen's effects on skin epithelium. Toxicol Appl Pharmacol 296:31-41
Sadler, Natalie C; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo et al. (2016) Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development. Drug Metab Dispos 44:984-91
Haggard, Derik E; Noyes, Pamela D; Waters, Katrina M et al. (2016) Phenotypically anchored transcriptome profiling of developmental exposure to the antimicrobial agent, triclosan, reveals hepatotoxicity in embryonic zebrafish. Toxicol Appl Pharmacol 308:32-45
Bugel, Sean M; Bonventre, Josephine A; Tanguay, Robert L (2016) Comparative Developmental Toxicity of Flavonoids Using an Integrative Zebrafish System. Toxicol Sci 154:55-68
Paulik, L Blair; Smith, Brian W; Bergmann, Alan J et al. (2016) Passive samplers accurately predict PAH levels in resident crayfish. Sci Total Environ 544:782-91
Tidwell, Lane G; Allan, Sarah E; O'Connell, Steven G et al. (2016) PAH and OPAH Flux during the Deepwater Horizon Incident. Environ Sci Technol 50:7489-97
Garcia, Gloria R; Noyes, Pamela D; Tanguay, Robert L (2016) Advancements in zebrafish applications for 21st century toxicology. Pharmacol Ther 161:11-21
Zhang, Guozhu; Roell, Kyle R; Truong, Lisa et al. (2016) A data-driven weighting scheme for multivariate phenotypic endpoints recapitulates zebrafish developmental cascades. Toxicol Appl Pharmacol 314:109-117
Truong, Lisa; Bugel, Sean M; Chlebowski, Anna et al. (2016) Optimizing multi-dimensional high throughput screening using zebrafish. Reprod Toxicol 65:139-147

Showing the most recent 10 out of 134 publications