Many polycyclic aromatic hydrocarbon (PAH) Superfund site contaminants are carcinogenic, some of which can cross the placenta to produce effects in offspring later in life. While metabolic activation to reactive intermediates is required for toxicity, little is known about the pharmacokinetics of PAHs and their metabolites in humans under real world exposure conditions. We therefore teamed with cancer biologists, chemists, and toxicologists in this SRP to develop the first physiologically based pharmacokinetic (PBPK) models for any high molecular weight carcinogenic PAHs capable of comparing species, tissue, and life stage differences in metabolic activation and detoxification processes in rats, mice and humans during our initial funding cycle. This project initially focused upon the potent transplacental carcinogen, dibenzo[def,p]chrysene (DBC) which produces T-cell lymphomas, a common cancer for children and young adults, in the offspring of mice exposed to a single dose during pregnancy. We included studies with the prototypic PAH commonly encountered in Superfund sites, benzo[a]pyrene (BaP), because of similar modes of action that will allow us to compare potencies based upon internal doses in target tissues. In this renewal, we will extend our studies to evaluate the disposition of key metabolites at each stage of development, growth, and maturation and the impact of mixture exposures to improve the basis for for extrapolating the risk of carcinogenesis to relevant human exposures.
Four specific aims are proposed to achieve this goal: (1) determine the comparative rates of in vitro metabolism of BaP, DBC and their major metabolites in rat, mouse and human tissues and the impact of mixture exposures;(2) conduct focused in vivo pharmacokinetic studies with BaP, DBC and metabolites and impact of mixtures in rats and mice;(3) determine the functional activity of enzymes important to PAH metabolism as a function of species, tissue and life stage;and (4) continue to develop, evaluate and refine life stage-specific PBPK models for rats, mice and humans to provide stakeholders with quantitative tools for predicting risks to humans at relevant exposures.

Public Health Relevance

The proposed research addresses 2 of the 4 mandated SRP research areas involving the development of advanced techniques for the detection, assessment, and evaluation of health effects and methods to assess the risks to human health. By completing these Aims, we will provide stakeholders with state-of-the-art quantitative and integrative tools that reduce the uncertainties associated with extrapolating from animal models, across dose, life stage, and route of exposure, to relevant human exposures.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-LWJ-D (SF))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon State University
United States
Zip Code
Madeen, Erin; Corley, Richard A; Crowell, Susan et al. (2015) Human in Vivo Pharmacokinetics of [(14)C]Dibenzo[def,p]chrysene by Accelerator Mass Spectrometry Following Oral Microdosing. Chem Res Toxicol 28:126-34
O'Connell, Steven G; Kincl, Laurel D; Anderson, Kim A (2014) Silicone wristbands as personal passive samplers. Environ Sci Technol 48:3327-35
O'Connell, Steven G; McCartney, Melissa A; Paulik, L Blair et al. (2014) Improvements in pollutant monitoring: optimizing silicone for co-deployment with polyethylene passive sampling devices. Environ Pollut 193:71-8
Kile, Molly L; Coker, Eric S; Smit, Ellen et al. (2014) A cross-sectional study of the association between ventilation of gas stoves and chronic respiratory illness in U.S. children enrolled in NHANESIII. Environ Health 13:71
Crowell, S R; Hanson-Drury, S; Williams, D E et al. (2014) In vitro metabolism of benzo[a]pyrene and dibenzo[def,p]chrysene in rodent and human hepatic microsomes. Toxicol Lett 228:48-55
Jariyasopit, Narumol; Zimmermann, Kathryn; Schrlau, Jill et al. (2014) Heterogeneous reactions of particulate matter-bound PAHs and NPAHs with NO3/N2O5, OH radicals, and O3 under simulated long-range atmospheric transport conditions: reactivity and mutagenicity. Environ Sci Technol 48:10155-64
Forsberg, Norman D; O'Connell, Steven G; Allan, Sarah E et al. (2014) Passive sampling coupled to ultraviolet irradiation: a useful analytical approach for studying oxygenated polycyclic aromatic hydrocarbon formation in bioavailable mixtures. Environ Toxicol Chem 33:177-81
Hillwalker, Wendy E; Anderson, Kim A (2014) Bioaccessibility of metals in alloys: evaluation of three surrogate biofluids. Environ Pollut 185:52-8
Jariyasopit, Narumol; McIntosh, Melissa; Zimmermann, Kathryn et al. (2014) Novel nitro-PAH formation from heterogeneous reactions of PAHs with NO2, NO3/N2O5, and OH radicals: prediction, laboratory studies, and mutagenicity. Environ Sci Technol 48:412-9
Bugel, Sean M; Bonventre, Josephine A; White, Lori A et al. (2014) Chronic exposure of killifish to a highly polluted environment desensitizes estrogen-responsive reproductive and biomarker genes. Aquat Toxicol 152:222-31

Showing the most recent 10 out of 61 publications