The organizations that remediate Superfund sites face the challenge of how to measure success;i.e., how to assess the changes in the bioavailability of contaminants.They need quantitative tools that can characterize contaminants and predict their risk to local organisms and humans. Non-chemical factors such as ultra-violet radiation can transform the parent compounds into unmonitored chemicals that can change the toxicity of waters and sediments. To address this issue, we have developed passive sampling devices (PSDs) that can sequester thousands of bioavailable chemicals. These devices can help regulatory agencies to evaluate new remediation technologies that may either produce or release previously unmonitored chemicals. Our PSDs are now sequestering chemicals at multiple Superfund sites, where they capture relevant organic compounds, including hydrophilic and semi-polar contaminants. We propose to test these hypotheses: PSDs sequester realistic and relevant mixtures from Superfund sites. PSDs can help researchers to characterize exposure accurately. PSDs can simplify toxicity assessments. PSDs can evaluate the effectiveness of remediation, considering not only the target contaminants but also any perturbations of the system that the remediation technologies may have induced. PSDs can serve as biological surrogates in public health assessments of Superfund sites. We propose to develop a set of widely applicable bio-analytical tools. We will integrate these tools with bioassays to characterize Superfund sediments. We assume that a small minority of the chemicals at Superfund sites are responsible for the majority of the toxicity. We will apply stressors to PSD extracts and characterize the chemical and biological effects. We will deliver methods and tools to assess the impact of non-chemical/chemical stressors that act on Superfund mixtures during natural transformation processes and remediation. We will develop PSD-bioaccumulation models that can predict chemical load in aquatic tissues with useful accuracy on the basis of measured PSD extracts. The ability to predict aquatic tissues from PSD extracts will enable Superfund managers and public health officials to collect data with better temporal and spatial resolution.

Public Health Relevance

We assume that a small minority of the chemicals at Superfund sites are responsible for the majority of the toxicity. We propose to help the Superfund achieve one of its key goals, which is to identify the components that have adverse biological effects. We will assess the impact of stressors supporting the Superfund program's goal to characterize exposure more accurately. We propose an alternative to tissue analysis that may help provide a better metric for measuring concentrations in fish during remediation, a SRP key goal..

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES016465-05
Application #
8552219
Study Section
Special Emphasis Panel (ZES1-LWJ-D (SF))
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
5
Fiscal Year
2013
Total Cost
$321,930
Indirect Cost
$101,430
Name
Oregon State University
Department
Type
DUNS #
053599908
City
Corvallis
State
OR
Country
United States
Zip Code
97339
Madeen, Erin; Corley, Richard A; Crowell, Susan et al. (2015) Human in Vivo Pharmacokinetics of [(14)C]Dibenzo[def,p]chrysene by Accelerator Mass Spectrometry Following Oral Microdosing. Chem Res Toxicol 28:126-34
O'Connell, Steven G; Kincl, Laurel D; Anderson, Kim A (2014) Silicone wristbands as personal passive samplers. Environ Sci Technol 48:3327-35
O'Connell, Steven G; McCartney, Melissa A; Paulik, L Blair et al. (2014) Improvements in pollutant monitoring: optimizing silicone for co-deployment with polyethylene passive sampling devices. Environ Pollut 193:71-8
Kile, Molly L; Coker, Eric S; Smit, Ellen et al. (2014) A cross-sectional study of the association between ventilation of gas stoves and chronic respiratory illness in U.S. children enrolled in NHANESIII. Environ Health 13:71
Crowell, S R; Hanson-Drury, S; Williams, D E et al. (2014) In vitro metabolism of benzo[a]pyrene and dibenzo[def,p]chrysene in rodent and human hepatic microsomes. Toxicol Lett 228:48-55
Jariyasopit, Narumol; Zimmermann, Kathryn; Schrlau, Jill et al. (2014) Heterogeneous reactions of particulate matter-bound PAHs and NPAHs with NO3/N2O5, OH radicals, and O3 under simulated long-range atmospheric transport conditions: reactivity and mutagenicity. Environ Sci Technol 48:10155-64
Forsberg, Norman D; O'Connell, Steven G; Allan, Sarah E et al. (2014) Passive sampling coupled to ultraviolet irradiation: a useful analytical approach for studying oxygenated polycyclic aromatic hydrocarbon formation in bioavailable mixtures. Environ Toxicol Chem 33:177-81
Hillwalker, Wendy E; Anderson, Kim A (2014) Bioaccessibility of metals in alloys: evaluation of three surrogate biofluids. Environ Pollut 185:52-8
Jariyasopit, Narumol; McIntosh, Melissa; Zimmermann, Kathryn et al. (2014) Novel nitro-PAH formation from heterogeneous reactions of PAHs with NO2, NO3/N2O5, and OH radicals: prediction, laboratory studies, and mutagenicity. Environ Sci Technol 48:412-9
Bugel, Sean M; Bonventre, Josephine A; White, Lori A et al. (2014) Chronic exposure of killifish to a highly polluted environment desensitizes estrogen-responsive reproductive and biomarker genes. Aquat Toxicol 152:222-31

Showing the most recent 10 out of 61 publications