Polycyclic aromatic hydrocarbons (PAHs), are routinely found at Superfund sites, are widespread environmental contaminants and have been shown to cross the placenta. Consequently, developmental exposure to PAHs has the potential to cause adverse health outcomes. This supposition is supported by recent epidemiological data indicating strong associations between early life stage PAH exposures and the increased occurrence of birth defects and increases in significant neurobehavioral deficits and heart disease. Human exposure to Superfund PAHs is complex;exposures always occur as complex mixtures rather than as individual parent PAHs. The potency for individual parent PAHs to produce adverse developmental outcomes is not well-defined, and more importantly the additive, antagonistic or synergistic effects of PAHs in mixtures is unknown. An added level of uncertainty is that PAHs are environmentally transformed, and the toxicity of these transformed PAHs is largely unstudied. Risk assessors are desperately in need of relevant in vivo data to develop comprehensive models for predictive toxicity. An immediate goal is to identify the environmentally relevant mixtures that pose hazard, and to identify the gene responses that drive the toxic endpoints. This project will use systems approaches in zebrafish to begin to define the mechanism of PAH toxicity. Our underlying hypothesis is that exposure to complex mixtures containing PAHs produce toxicity by aryl hydrocarbon receptor (AHR)-dependent and AHR-independent mechanisms, dependent on the structure and composition of the mixtures. We will test this hypothesis in three Specific Aims: 1) Determine the phenotypic impact of embryonic exposure to individual environmentally relevant PAHs, complex mixtures, and environmentally transformed PAHs and define the role of AHRs in the response;2) To continue to use next generation sequencing to identify the early developmental biomarkers of PAH exposure to individual environmentally relevant PAHs, complex mixtures, and environmentally transformed PAHs;3) To define the long lasting impacts of these embryonic exposure on the adult cardiovascular and central nervous systems.

Public Health Relevance

The proposed research addresses three of the four mandated SRP research areas involving the development of advanced techniques for the detection, assessment, and evaluation of health effects, methods to assess the risks to human health, and methods and technologies to detect hazardous substances in the environment.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel ()
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon State University
United States
Zip Code
Madeen, Erin; Corley, Richard A; Crowell, Susan et al. (2015) Human in Vivo Pharmacokinetics of [(14)C]Dibenzo[def,p]chrysene by Accelerator Mass Spectrometry Following Oral Microdosing. Chem Res Toxicol 28:126-34
O'Connell, Steven G; Kincl, Laurel D; Anderson, Kim A (2014) Silicone wristbands as personal passive samplers. Environ Sci Technol 48:3327-35
O'Connell, Steven G; McCartney, Melissa A; Paulik, L Blair et al. (2014) Improvements in pollutant monitoring: optimizing silicone for co-deployment with polyethylene passive sampling devices. Environ Pollut 193:71-8
Kile, Molly L; Coker, Eric S; Smit, Ellen et al. (2014) A cross-sectional study of the association between ventilation of gas stoves and chronic respiratory illness in U.S. children enrolled in NHANESIII. Environ Health 13:71
Crowell, S R; Hanson-Drury, S; Williams, D E et al. (2014) In vitro metabolism of benzo[a]pyrene and dibenzo[def,p]chrysene in rodent and human hepatic microsomes. Toxicol Lett 228:48-55
Jariyasopit, Narumol; Zimmermann, Kathryn; Schrlau, Jill et al. (2014) Heterogeneous reactions of particulate matter-bound PAHs and NPAHs with NO3/N2O5, OH radicals, and O3 under simulated long-range atmospheric transport conditions: reactivity and mutagenicity. Environ Sci Technol 48:10155-64
Forsberg, Norman D; O'Connell, Steven G; Allan, Sarah E et al. (2014) Passive sampling coupled to ultraviolet irradiation: a useful analytical approach for studying oxygenated polycyclic aromatic hydrocarbon formation in bioavailable mixtures. Environ Toxicol Chem 33:177-81
Hillwalker, Wendy E; Anderson, Kim A (2014) Bioaccessibility of metals in alloys: evaluation of three surrogate biofluids. Environ Pollut 185:52-8
Jariyasopit, Narumol; McIntosh, Melissa; Zimmermann, Kathryn et al. (2014) Novel nitro-PAH formation from heterogeneous reactions of PAHs with NO2, NO3/N2O5, and OH radicals: prediction, laboratory studies, and mutagenicity. Environ Sci Technol 48:412-9
Bugel, Sean M; Bonventre, Josephine A; White, Lori A et al. (2014) Chronic exposure of killifish to a highly polluted environment desensitizes estrogen-responsive reproductive and biomarker genes. Aquat Toxicol 152:222-31

Showing the most recent 10 out of 61 publications