The Biostatistics and Modeling Core provides a centralized plan for experimental design, data integration and predictive modeling of research data that is utilized by all of our Research Projects and Cores. We have created a multi-disciplinary team with expertise in statistics, bioinformatics, modeling and computer science to provide broad support capabilities in this Research Support Core. In the first three years of this SRP, Core C has provided invaluable support in all aspects of the research. From experimental design to multivariate integration, from bioinformatics to regulatory networks, and from data management to customized software solutions, our Core has facilitated scientific advancement in the research projects and enabled data integration across multiple research projects. In the next five years, we propose to continue our support of the program, providing sophisticated data analyses and expand our efforts into more predictive, computational modeling through three primary specific aims;1) biostatistics support to facilitate linkage of exposure (source) to phenotype (outcome) for chemical mixtures, 2) predictive modeling and informatics for mechanistic evaluation of mixtures, and 3) customized software solutions for data processing and integrations. Core C ensures statistically robust experimental design, standardized data pipelines, data integration and results interpretation across all research projects and cores to ensure robust measurement of exposure, dose, response and phenotype and achieve source to outcome linkage for science-based risk assessment. Multidisciplinary training of toxicology students and postdoctoral fellows in statistics and bioinformatics also assures that the next generation of researchers and professionals tasked with protecting human health and the environment from the risks of hazardous substances will possess the skills to analyze and interpret their own data.

Public Health Relevance

Assessing the health effects of PAHs is a major challenge because environmental exposures to these chemicals are usually complex mixtures of PAHs and often other toxicants. Integration of exposure data with biological activity and pharmacokinetics is essential to evaluate the effects presented by these chemical mixtures on human health.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel ()
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon State University
United States
Zip Code
Madeen, Erin; Corley, Richard A; Crowell, Susan et al. (2015) Human in Vivo Pharmacokinetics of [(14)C]Dibenzo[def,p]chrysene by Accelerator Mass Spectrometry Following Oral Microdosing. Chem Res Toxicol 28:126-34
O'Connell, Steven G; Kincl, Laurel D; Anderson, Kim A (2014) Silicone wristbands as personal passive samplers. Environ Sci Technol 48:3327-35
O'Connell, Steven G; McCartney, Melissa A; Paulik, L Blair et al. (2014) Improvements in pollutant monitoring: optimizing silicone for co-deployment with polyethylene passive sampling devices. Environ Pollut 193:71-8
Kile, Molly L; Coker, Eric S; Smit, Ellen et al. (2014) A cross-sectional study of the association between ventilation of gas stoves and chronic respiratory illness in U.S. children enrolled in NHANESIII. Environ Health 13:71
Crowell, S R; Hanson-Drury, S; Williams, D E et al. (2014) In vitro metabolism of benzo[a]pyrene and dibenzo[def,p]chrysene in rodent and human hepatic microsomes. Toxicol Lett 228:48-55
Jariyasopit, Narumol; Zimmermann, Kathryn; Schrlau, Jill et al. (2014) Heterogeneous reactions of particulate matter-bound PAHs and NPAHs with NO3/N2O5, OH radicals, and O3 under simulated long-range atmospheric transport conditions: reactivity and mutagenicity. Environ Sci Technol 48:10155-64
Forsberg, Norman D; O'Connell, Steven G; Allan, Sarah E et al. (2014) Passive sampling coupled to ultraviolet irradiation: a useful analytical approach for studying oxygenated polycyclic aromatic hydrocarbon formation in bioavailable mixtures. Environ Toxicol Chem 33:177-81
Hillwalker, Wendy E; Anderson, Kim A (2014) Bioaccessibility of metals in alloys: evaluation of three surrogate biofluids. Environ Pollut 185:52-8
Jariyasopit, Narumol; McIntosh, Melissa; Zimmermann, Kathryn et al. (2014) Novel nitro-PAH formation from heterogeneous reactions of PAHs with NO2, NO3/N2O5, and OH radicals: prediction, laboratory studies, and mutagenicity. Environ Sci Technol 48:412-9
Bugel, Sean M; Bonventre, Josephine A; White, Lori A et al. (2014) Chronic exposure of killifish to a highly polluted environment desensitizes estrogen-responsive reproductive and biomarker genes. Aquat Toxicol 152:222-31

Showing the most recent 10 out of 61 publications