The Oregon State University Superfund Research Program (SRP) is multi-investigator, multi-disciplinary and multi-institutional. In partnership wit Pacific Northwest National Laboratories, and other stakeholders and collaborators, we seek to develop new technologies to assess polycyclic aromatic hydrocarbons (PAHs) found at many of the nation's Superfund sites and assess the risk they pose for human health. The SRP consists of three biomedical research projects, two non-biomedical research projects, Administrative, Research Translation, Community Engagement, Training and two research support cores (Biostatistics and Modeling and Chemistry). Over the next five years of the program a number of innovative and high impact research goals will be pursued including: (1) the first ever study of how humans take-up and excrete carcinogenic PAHs at environmental levels of exposure;(2) produce Physiologically Based Pharmacokinetic (PBPK) models for risk assessment of PAH mixtures;(3) determine developmental toxicities of PAH mixtures and PAHs formed in the environment using a zebrafish model;(4) employ passive sampling devices to assess bioavailable PAHs at Superfund sites and the effectiveness of remediation strategies and;(5) employ new analytical approaches to assessing chemical changes in PAHs in soilds and sediments at Superfund sites over time. The cores will: (1) direct the activities of the SRP (Administrative);(2) pursue effective mechanisms for disseminating our findings to stakeholders (Research Translation), (3) work with communities impacted by PAH exposure to address concerns and pursue solutions for reduced risk (Community Engagement);(4) provide intensive multi-disciplinary training opportunities for the next generation of Environmental Health Scientists (Training) and;(5 and 6) provide Biostatistical and Modeling support for the design, conduct and interpretation of the research being conducted as well as using state-of the-art Chemistry instrumentation and approaches to assess the identity and quantity of hundreds of PAHs found in environmental and biological matrices. Accomplishing these goals will provide significant scientific advancement and improve the quality of life for impacted communities.

Public Health Relevance

PAHs are formed from the burning of coal, any petroleum product, tobacco, etc. PAHs are in significant amounts at almost half the nation's designated Superfund sites and are the primary driver for mediation at many of those sites. This SRP seeks to develop new technologies and research methodologies to assess the impact of PAHs on communities impacted by PAHs with the goal of reducing risk from exposure.

National Institute of Health (NIH)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1)
Program Officer
Carlin, Danielle J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon State University
Public Health & Prev Medicine
Earth Sciences/Resources
United States
Zip Code
Madeen, Erin; Corley, Richard A; Crowell, Susan et al. (2015) Human in Vivo Pharmacokinetics of [(14)C]Dibenzo[def,p]chrysene by Accelerator Mass Spectrometry Following Oral Microdosing. Chem Res Toxicol 28:126-34
O'Connell, Steven G; Kincl, Laurel D; Anderson, Kim A (2014) Silicone wristbands as personal passive samplers. Environ Sci Technol 48:3327-35
O'Connell, Steven G; McCartney, Melissa A; Paulik, L Blair et al. (2014) Improvements in pollutant monitoring: optimizing silicone for co-deployment with polyethylene passive sampling devices. Environ Pollut 193:71-8
Kile, Molly L; Coker, Eric S; Smit, Ellen et al. (2014) A cross-sectional study of the association between ventilation of gas stoves and chronic respiratory illness in U.S. children enrolled in NHANESIII. Environ Health 13:71
Crowell, S R; Hanson-Drury, S; Williams, D E et al. (2014) In vitro metabolism of benzo[a]pyrene and dibenzo[def,p]chrysene in rodent and human hepatic microsomes. Toxicol Lett 228:48-55
Jariyasopit, Narumol; Zimmermann, Kathryn; Schrlau, Jill et al. (2014) Heterogeneous reactions of particulate matter-bound PAHs and NPAHs with NO3/N2O5, OH radicals, and O3 under simulated long-range atmospheric transport conditions: reactivity and mutagenicity. Environ Sci Technol 48:10155-64
Forsberg, Norman D; O'Connell, Steven G; Allan, Sarah E et al. (2014) Passive sampling coupled to ultraviolet irradiation: a useful analytical approach for studying oxygenated polycyclic aromatic hydrocarbon formation in bioavailable mixtures. Environ Toxicol Chem 33:177-81
Hillwalker, Wendy E; Anderson, Kim A (2014) Bioaccessibility of metals in alloys: evaluation of three surrogate biofluids. Environ Pollut 185:52-8
Jariyasopit, Narumol; McIntosh, Melissa; Zimmermann, Kathryn et al. (2014) Novel nitro-PAH formation from heterogeneous reactions of PAHs with NO2, NO3/N2O5, and OH radicals: prediction, laboratory studies, and mutagenicity. Environ Sci Technol 48:412-9
Bugel, Sean M; Bonventre, Josephine A; White, Lori A et al. (2014) Chronic exposure of killifish to a highly polluted environment desensitizes estrogen-responsive reproductive and biomarker genes. Aquat Toxicol 152:222-31

Showing the most recent 10 out of 61 publications