Preterm birth, the leading cause of neonatal mortality in the United States, is also associated with a number of chronic health conditions and developmental disabilities that cause lifelong consequences. In Puerto Rico, the preterm birth rate is 17.7% of live births. At 50% above the U.S. average, it is the highest rate of any United States jurisdiction, below only Malawi (18.1%) globally. The researchers investigations suggest that the higher preterm birth rates in Puerto Rico cannot be explained by changes in obstetric practices, and that there is compelling preliminary evidence that exposure to hazardous chemicals contributes to preterm birth. Puerto Rico has 16 active Superfund sites and 200+ hazardous waste sites. Risk of exposure to contamination is high as many of these sites are unlined landfills that overlie Karst aquifers which present highly susceptible pathways for exposure to contamination. PROTECT (Puerto Rico Testsite for Exploring Contamination Threats) brings together multidisciplinary researchers study the transport, exposure, health impact and remediation of contaminants, with particular attention to chlorinated solvents and phthalates commonly found at Superfund sites, as both suspect and model agents in the high to preterm birth rates in Puerto Rico. To do so, PROTECT uses an innovative, holistic, source-to-outcome structure, integrating epidemiological, toxicological, and analytical, fate-transport, and remediation studies along with a unified sampling infrastructure, a centralized, indexed data repository and a data management system. Administrative, research translation, training and community engagement cores engage and inform stakeholders, provide knowledge-transfer activities to the greater SRP and environmental health community, and provide extensive cross-disciplinary training. PROTECT is responsive to NIEHS, EPA and CDC strategic goals, and addresses priority areas identified by the Institute of Medicine Committee on preterm birth. Since the Center's inception in 2010, PROTECT researchers have obtained significant and novel results indicating 1) extensive groundwater contamination in the northern Karst region of Puerto Rico;2) potential mechanisms by which chemicals can stimulate preterm birth;and, 3) suspect chemicals that are elevated in the women in this study. The investigators have also developed a new environmentally-friendly technique for efficient decontamination of groundwater and an improved large-volume urinalysis technique. Research results have been documented in over 50 journal papers and 2 full patent applications. In addition, over 480 pregnant study subjects have been enrolled (200 of whom have completed their pregnancies), and over 70 trainees have participated in the Center. PROTECT will build on these successes with continued research and training to provide the much needed understanding of the role of hazardous chemicals and other environmental factors in preterm birth, and to develop new methods for contaminant remediation in Puerto Rico and beyond. This work will advance environmental health science in general, and potentially lead to a reduction in preterm birth rates.

Public Health Relevance

PROTECT is exploring the link between exposure to hazardous chemicals and the high rate of preterm birth in Puerto Rico, which has both 16 active Superfund sites and a preterm birth rate of 17.7% of live births, the highest rate of any U.S. jurisdiction ad below only Malawi (18.1%) globally. Improved understanding of the link between preterm birth and contamination, together with developing sustainable technologies to remove contamination, will have direct impact in Puerto Rico (a disadvantaged population) and beyond.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
3P42ES017198-05S2
Application #
8927926
Study Section
Special Emphasis Panel (ZES1-LKB-K (S))
Program Officer
Henry, Heather F
Project Start
2009-04-01
Project End
2019-03-31
Budget Start
2014-07-01
Budget End
2015-03-31
Support Year
5
Fiscal Year
2014
Total Cost
$89,242
Indirect Cost
$21,735
Name
Northeastern University
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
001423631
City
Boston
State
MA
Country
United States
Zip Code
02115
Zhou, Wei; Meng, Xiaoxiao; Rajic, Ljiljana et al. (2018) ""Floating"" cathode for efficient H2O2 electrogeneration applied to degradation of ibuprofen as a model pollutant. Electrochem commun 96:37-41
Ashrap, Pahriya; Watkins, Deborah J; Calafat, Antonia M et al. (2018) Elevated concentrations of urinary triclocarban, phenol and paraben among pregnant women in Northern Puerto Rico: Predictors and trends. Environ Int 121:990-1002
Ferguson, Kelly K; Meeker, John D; Cantonwine, David E et al. (2018) Environmental phenol associations with ultrasound and delivery measures of fetal growth. Environ Int 112:243-250
Cathey, Amber; Ferguson, Kelly K; McElrath, Thomas F et al. (2018) Distribution and predictors of urinary polycyclic aromatic hydrocarbon metabolites in two pregnancy cohort studies. Environ Pollut 232:556-562
Lan, Jiaqi; Rahman, Sheikh Mokhlesur; Gou, Na et al. (2018) Genotoxicity Assessment of Drinking Water Disinfection Byproducts by DNA Damage and Repair Pathway Profiling Analysis. Environ Sci Technol 52:6565-6575
Wang, Poguang; Giese, Roger W (2018) Interpretation of Mass Spectral Data for the Cisplatin 1,2 Intrastrand Guanine-Guanine Adduct. Chem Res Toxicol 31:1106-1107
Hojabri, Shirin; Rajic, Ljiljana; Alshawabkeh, Akram N (2018) Transient reactive transport model for physico-chemical transformation by electrochemical reactive barriers. J Hazard Mater 358:171-177
Ferguson, Kelly K; Kamai, Elizabeth M; Cantonwine, David E et al. (2018) Associations between repeated ultrasound measures of fetal growth and biomarkers of maternal oxidative stress and inflammation in pregnancy. Am J Reprod Immunol 80:e13017
Elkin, Elana R; Harris, Sean M; Loch-Caruso, Rita (2018) Trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine induces lipid peroxidation-associated apoptosis via the intrinsic and extrinsic apoptosis pathways in a first-trimester placental cell line. Toxicol Appl Pharmacol 338:30-42
Aker, Amira M; Johns, Lauren; McElrath, Thomas F et al. (2018) Associations between maternal phenol and paraben urinary biomarkers and maternal hormones during pregnancy: A repeated measures study. Environ Int 113:341-349

Showing the most recent 10 out of 163 publications