Exposure to toxicants has been linked to the development or exacerbation of chronic disease. While the health of effects of ubiquitous environmental substances such as tobacco smoke and particulate matter are more well-studied, less is known about how volatile organic chemicals (VOC)?a class of toxicants associated with higher prevalence of type 2 diabetes (T2D) and stroke?promote the development of cardiometabolic disease (CMD). Understanding how VOC affect CMD is important because obesity and T2D are rapidly growing global health crises. Accordingly, the overarching goals of this Superfund project are to determine the mechanisms by which VOCs negatively impact cardiovascular health and metabolism, identify biomarkers for VOC exposure and vascular injury, and test therapeutic strategies to minimize VOC-induced CMD. Our preliminary data suggest that VOC such as acrolein promote endoplasmic reticulum (ER) stress and trigger the unfolded protein response (UPR) in endothelial cells, resulting in insulin resistance. In addition, we find that individuals exposed to VOC such a vinyl chloride develop symptoms of CMD that could be instigated at the molecular level by VOC-induced ER stress. Specifically, we hypothesize that aldehyde metabolites of VOC, which are generally more toxic than their parent compound, diminish insulin sensitivity in vascular tissues by inducing ER stress, which triggers metabolic changes that accelerate ectopic lipid deposition and promote cardiometabolic dysfunction. To test this hypothesis we will: (1) examine the effects of VOC exposure on endothelial function and insulin resistance; (2) delineate the contribution of endothelial UPR to the cardiometabolic toxicity of VOC; and (3) elucidate the role of VOC-derived aldehydes in exacerbating CMD. The design of these studies includes molecular and pharmacological interventions designed to detoxify or quench the reactive intermediates evoked by VOC exposure as well as studies that could lead to the identification of novel, sensitive and robust biomarkers of both VOC exposure and vascular injury. These studies were designed to synergize with and provide biological plausibility for the associations identified in Project 1. Successful completion of this project will lead to identification of the underlying cellular and molecular mechanisms by which VOC affect insulin sensitivity and cardiometabolic function and provide insights into how VOC toxicity could be prevented or therapeutically minimized by targeting aldehydes or protein-folding pathways.

Public Health Relevance

Exposure to hazardous substances has been linked to the development or worsening of chronic disease. The purposes of this Superfund project are to understand how a particular class of compounds, i.e., volatile organic compounds, affect cardiovascular health and the onset or progression of insulin resistance, obesity and diabetes as well as to develop therapeutic strategies to minimize these affect after exposure to toxic compounds.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES023716-03
Application #
9672937
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2019-04-01
Budget End
2020-03-31
Support Year
3
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Louisville
Department
Type
DUNS #
057588857
City
Louisville
State
KY
Country
United States
Zip Code
40292
Lang, Anna L; Chen, Liya; Poff, Gavin D et al. (2018) Vinyl chloride dysregulates metabolic homeostasis and enhances diet-induced liver injury in mice. Hepatol Commun 2:270-284
Xie, Zhenzhen; Ramakrishnam Raju, Mandapati V; Stewart, Andrew C et al. (2018) Imparting sensitivity and selectivity to a gold nanoparticle chemiresistor through thiol monolayer functionalization for sensing acetone. RSC Adv 8:35618-35624
Lang, Anna L; Beier, Juliane I (2018) Interaction of volatile organic compounds and underlying liver disease: a new paradigm for risk. Biol Chem 399:1237-1248
Riggs, Daniel W; Yeager, Ray A; Bhatnagar, Aruni (2018) Defining the Human Envirome: An Omics Approach for Assessing the Environmental Risk of Cardiovascular Disease. Circ Res 122:1259-1275
Li, Mingxiao; Li, Qi; Nantz, Michael H et al. (2018) Analysis of Carbonyl Compounds in Ambient Air by a Microreactor Approach. ACS Omega 3:6764-6769
Hein, David W; Zhang, Xiaoyan; Doll, Mark A (2018) Role of N-acetyltransferase 2 acetylation polymorphism in 4, 4'-methylene bis (2-chloroaniline) biotransformation. Toxicol Lett 283:100-105
Hein, David W; Fakis, Giannoulis; Boukouvala, Sotiria (2018) Functional expression of human arylamine N-acetyltransferase NAT1*10 and NAT1*11 alleles: a mini review. Pharmacogenet Genomics 28:238-244
Liang, Yaqin; Lang, Anna L; Zhang, Jian et al. (2018) Exposure to Vinyl Chloride and Its Influence on Western Diet-Induced Cardiac Remodeling. Chem Res Toxicol 31:482-493
Ramana, Kota V; Srivastava, Sanjay; Singhal, Sharad S (2017) Lipid Peroxidation Products in Human Health and Disease 2016. Oxid Med Cell Longev 2017:2163285
Ramana, Kota V; Srivastava, Sanjay; Reddy, Aramati B M (2016) Immune, Inflammatory, and Oxidative Responses in Cardiovascular Complications. Oxid Med Cell Longev 2016:6858402

Showing the most recent 10 out of 11 publications