Mobility and Fate of Asbestos Particles in the Environment: Minimizing the threat that asbestos disposal sites present to surrounding communities requires containment;preventing offsite migration is of paramount importance. Because asbestos fibers are most hazardous when inhaled, research has focused on airborne transport. However, there is now ample empirical evidence that aqueous transport - in groundwater and rivers - is a significant pathway for spreading of asbestos, and such transport has threatened drinking water supplies in some areas. Because asbestos particles have a large specific surface area, surface charge effects are strong and presumably influence their mobility and interaction with the environment. In particular, asbestos fibers rarely exist in isolation but rather form aggregates;however, little is known regarding the mechanisms controlling aggregate formation. In addition, the unusually large aspect ratio of asbestos is expected to exert a strong control on the migration and trapping of particles in groundwater transport through soil;however no studies have examined aqueous transport in the laboratory. We hypothesize that aggregate size exerts the primary control on the rate of trapping of asbestos particles in soil, and that such trapping (""""""""straining"""""""") may reversed under changing water chemistry. We propose to test these hypotheses with three Specific Aims.
Aim 1 : To elucidate the physico-chemical processes controlling asbestos aggregate formation and mobility.
Aim 2 : Determine mobility and straining of asbestos in groundwater, through laboratory experiments and theory.
Aim 3 : To identify the extent of groundwater transport, and the size distribution of aggregates, for asbestos particles at the Ambler Superfund site;and make recommendations for containment of asbestos to limit aqueous transport. Our key innovations are to: (1) probe the dynamics of asbestos at the fiber scale using real-time electron-microscopy observations;(2) perform innovative soil column experiments that allow us to image the internal granular pore structure;and (3) apply experimentally-validated theories to field observations at a Superfund site to make scientifically-informed recommendations for improving containment strategies of asbestos. We believe that the proposed research will directly inform policy for asbestos containment at Superfund and Brownfields sites, while bringing immediate benefit to the community surrounding the Ambler asbestos piles.

Public Health Relevance

We examine how asbestos particles move through, and are trapped in, soil. By understanding the mechanisms governing the interactions of asbestos fibers with each other and with soil, we will be better able to predict its fate in the environment and devise better containment strategies that minimize the threat to public health. Theoretical and experimental results will be applied to a nearby Superfund site in Ambler, PA, demonstrating the utility of our research for informing policy while providing an immediate benefit for residents of that community.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
United States
Zip Code
Huang, Jing; Liu, Yulun; Vitale, Steve et al. (2017) On meta- and mega-analyses for gene-environment interactions. Genet Epidemiol 41:876-886
Dietterich, Lee H; Gonneau, Cédric; Casper, Brenda B (2017) Arbuscular mycorrhizal colonization has little consequence for plant heavy metal uptake in contaminated field soils. Ecol Appl 27:1862-1875
Cheung, Mitchell; Testa, Joseph R (2017) BAP1, a tumor suppressor gene driving malignant mesothelioma. Transl Lung Cancer Res 6:270-278
Mesaros, Clementina; Arroyo, Alejandro D; Blair, Ian A et al. (2017) Coenzyme A thioester formation of 11- and 15-oxo-eicosatetraenoic acid. Prostaglandins Other Lipid Mediat 130:1-7
Patel, Chirag J; Kerr, Jacqueline; Thomas, Duncan C et al. (2017) Opportunities and Challenges for Environmental Exposure Assessment in Population-Based Studies. Cancer Epidemiol Biomarkers Prev 26:1370-1380
Gonneau, Cédric; Mohanty, Sanjay K; Dietterich, Lee H et al. (2017) Differential elemental uptake in three pseudo-metallophyte C4 grasses in situ in the eastern USA. Plant Soil 416:149-163
Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A et al. (2017) Synthetic Secoisolariciresinol Diglucoside (LGM2605) Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage. Int J Mol Sci 18:
Gonneau, Cédric; Miller, Kinsey; Mohanty, Sanjay K et al. (2017) Framework for assessment and phytoremediation of asbestos-contaminated sites. Environ Sci Pollut Res Int 24:25912-25922
Wu, Lei; Ortiz, Carlos P; Jerolmack, Douglas J (2017) Aggregation of Elongated Colloids in Water. Langmuir 33:622-629
Xu, Rengyi; Mesaros, Clementina; Weng, Liwei et al. (2017) Comparison of statistical methods for detection of serum lipid biomarkers for mesothelioma and asbestos exposure. Biomark Med 11:547-556

Showing the most recent 10 out of 32 publications