Alcoholism is characterized by a loss of control over drinking, suggesting that there are long-lasting changes in higher cortical brain areas that normally control compulsive behaviors. Despite this general understanding, there is little known about the specific actions of alcohol on neurons within these cortical circuits. During the last funding cycle, we addressed this shortcoming and completed a series of electrophysiological studies that examined the effects of ethanol on """"""""persistent"""""""" activity in the medial prefrontal cortex (PFC). This activity is characterized by spontaneous and rhythmic transitions between quiescent down-states and depolarized up-states that generate relevant patterns of firing. Persistent activity may allow PFC neurons to integrate and process sensory information derived from internal and external cues and to use this information to control sub-cortical circuits. The results from these pioneering studies showed that prefrontal up-states and associated firing are inhibited by concentrations of ethanol associated with mild to moderate intoxication. They also demonstrated that this effect resulted from inhibition of synaptic NMDA receptors and that PFC AMPA receptors and GABA{A} receptors are largely insensitive to behaviorally relevant concentrations of ethanol. In this application, we extend these studies and will investigate the effects of chronic ethanol on prefrontal cortex function. These studies use a well-established mouse model of chronic intermittent ethanol (CIE) exposure that increases levels of drinking as compared to non-dependent animals. We hypothesize that repeated cycles of CIE exposure will produce long-lasting changes in the excitability and plasticity of neurons within the orbitofrontal region (OFC) of the prefrontal cortex, an area known to be dysfunctional in human alcoholics. This hypothesis will be tested using four specific aims that will i) Assess the effect of chronic ethanol exposure on behaviors that require a functional OFC network;ii) Determine the acute ethanol sensitivity of glutamatergic and GABAergic transmission in OFC neurons;iii) Monitor changes in glutamatergic and GABAergic synaptic transmission in OFC neurons from control and ethanol dependent mice and iv) Determine the effects of chronic ethanol exposure on plasticity mechanisms of OFC neurons. The results from these studies will be critical in advancing our understanding of the effects of chronic ethanol on higher cortical function.

Public Health Relevance

Alcoholism is associated with deficits in brain function that result in impaired judgment and poor decision making. However, how alcohol produces these effects is unknown. Studies carried out in this proposal will determine the ways in which chronic exposure to alcohol changes the function of neurons in the prefrontal cortex, a brain area critical for evaluating potential outcomes and making good choices.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Specialized Center (P50)
Project #
5P50AA010761-19
Application #
8601278
Study Section
Special Emphasis Panel (ZAA1)
Project Start
Project End
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
19
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Medical University of South Carolina
Department
Type
DUNS #
City
Charleston
State
SC
Country
United States
Zip Code
29403
Laguesse, Sophie; Morisot, Nadege; Shin, Jung Hoon et al. (2017) Prosapip1-Dependent Synaptic Adaptations in the Nucleus Accumbens Drive Alcohol Intake, Seeking, and Reward. Neuron 96:145-159.e8
Cannady, Reginald; McGonigal, Justin T; Newsom, Ryan J et al. (2017) Prefrontal Cortex KCa2 Channels Regulate mGlu5-Dependent Plasticity and Extinction of Alcohol-Seeking Behavior. J Neurosci 37:4359-4369
Anderson, Rachel I; Becker, Howard C (2017) Role of the Dynorphin/Kappa Opioid Receptor System in the Motivational Effects of Ethanol. Alcohol Clin Exp Res 41:1402-1418
Witkiewitz, Katie; Wilson, Adam D; Pearson, Matthew R et al. (2017) Temporal Stability of Heavy Drinking Days and Drinking Reductions Among Heavy Drinkers in the COMBINE Study. Alcohol Clin Exp Res 41:1054-1062
Litten, Raye Z; Falk, Daniel E; O'Malley, Stephanie S et al. (2017) Letter to Editor in Response to Johnson's Commentary (2017) on the Witkiewitz and Colleagues (2017) Article. Alcohol Clin Exp Res 41:1381-1382
Rinker, Jennifer A; Fulmer, Diana B; Trantham-Davidson, Heather et al. (2017) Differential potassium channel gene regulation in BXD mice reveals novel targets for pharmacogenetic therapies to reduce heavy alcohol drinking. Alcohol 58:33-45
Nimitvilai, Sudarat; Lopez, Marcelo F; Mulholland, Patrick J et al. (2017) Ethanol Dependence Abolishes Monoamine and GIRK (Kir3) Channel Inhibition of Orbitofrontal Cortex Excitability. Neuropsychopharmacology 42:1800-1812
Trantham-Davidson, Heather; Centanni, Samuel W; Garr, S Corrin et al. (2017) Binge-Like Alcohol Exposure During Adolescence Disrupts Dopaminergic Neurotransmission in the Adult Prelimbic Cortex. Neuropsychopharmacology 42:1024-1036
Rinker, Jennifer A; Mulholland, Patrick J (2017) Promising pharmacogenetic targets for treating alcohol use disorder: evidence from preclinical models. Pharmacogenomics 18:555-570
Stewart, Scott H; Reuben, Adrian; Anton, Raymond F (2017) Relationship of Abnormal Chromatographic Pattern for Carbohydrate-Deficient Transferrin with Severe Liver Disease. Alcohol Alcohol 52:24-28

Showing the most recent 10 out of 179 publications