The Animal Behavior Core will provide services, technical assistance and training needed for behavioral testing of mice and rats to satisfy the experimental aims of the investigators within the Research Components of the ACTG. A primary goal of the Animal Behavior Core is to standardize the methods and the analyses for alcohol-related behavioral testing for mice and rats. Core personnel will conduct all homecage drinking studies in mice and rats, and other ethanol-related behavioral tests, as required by the Research Components. The core will instruct research personnel in other behavioral procedures as needed. In addition, the Core will directly compare the rat operant self-administration procedures currently in use by Center Investigators. By conducting a considerable proportion of the behavioral testing within the Core, we ensure that the procedures are performed, and the data are analyzed, in a consistent manner, allowing for maximal comparability of the effects of different experimental manipulations across center projects. This model of centralized behavioral testing by the Animal Behavior Core worked extraordinarily well in the first funding period, allowing for smooth, efficient completion of many behavioral studies. The overall goal of the Animal Behavior Core is to assist Research Components in experiments that test hypotheses regarding the role of novel signaling molecules in alcohol drinking.

Public Health Relevance

The search for new drug targets to develop treatments for alcohol use disorders requires careful testing within preclinical animal models. The Animal Behavior Core will collaborate with Research Components in experiments designed to manipulate excessive ethanol intake and relapse. These studies will seek to increase our understanding of alcohol addiction and open new possibilities for treatment.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Specialized Center (P50)
Project #
5P50AA017072-08
Application #
8794380
Study Section
Special Emphasis Panel (ZAA1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
8
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
City
San Francisco
State
CA
Country
United States
Zip Code
94608
Lei, Kelly; Wegner, Scott A; Yu, Ji-Hwan et al. (2016) Orexin-1 receptor blockade suppresses compulsive-like alcohol drinking in mice. Neuropharmacology 110:431-7
Ron, Dorit; Barak, Segev (2016) Molecular mechanisms underlying alcohol-drinking behaviours. Nat Rev Neurosci 17:576-91
Darcq, Emmanuel; Morisot, Nadege; Phamluong, Khanhky et al. (2016) The Neurotrophic Factor Receptor p75 in the Rat Dorsolateral Striatum Drives Excessive Alcohol Drinking. J Neurosci 36:10116-27
Lei, Kelly; Wegner, Scott A; Yu, Ji-Hwan et al. (2016) A single alcohol drinking session is sufficient to enable subsequent aversion-resistant consumption in mice. Alcohol 55:9-16
Yang, Sungchil; Ben-Shalom, Roy; Ahn, Misol et al. (2016) β-Arrestin-Dependent Dopaminergic Regulation of Calcium Channel Activity in the Axon Initial Segment. Cell Rep 16:1518-26
Laguesse, Sophie; Morisot, Nadege; Phamluong, Khanhky et al. (2016) Region specific activation of the AKT and mTORC1 pathway in response to excessive alcohol intake in rodents. Addict Biol :
Warnault, Vincent; Darcq, Emmanuel; Morisot, Nadege et al. (2016) The BDNF Valine 68 to Methionine Polymorphism Increases Compulsive Alcohol Drinking in Mice That Is Reversed by Tropomyosin Receptor Kinase B Activation. Biol Psychiatry 79:463-73
Beckley, Jacob T; Laguesse, Sophie; Phamluong, Khanhky et al. (2016) The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons. J Neurosci 36:701-13
Blasio, Angelo; Messing, Robert O (2016) Binge Drinking With Protein Kinase C Epsilon: A Role for Mammalian Target of Rapamycin Complex 2? Biol Psychiatry 79:425-6
Maiya, Rajani; McMahon, Thomas; Wang, Dan et al. (2016) Selective chemical genetic inhibition of protein kinase C epsilon reduces ethanol consumption in mice. Neuropharmacology 107:40-8

Showing the most recent 10 out of 57 publications