The Vector and Imaging Core (Core Component 3) will provide centralized services, supplies, and shared equipment to all Research Components and Pilot Projects that propose use of viral vectors for gene silencing by RNA interference in select brain regions. Core personnel will design effective shRNA molecules, produce high titer viruses, and perform in vitro and in vivo testing. Core personnel will also produce viruses for overexpression of genes of interest. The Vector and Imaging Core will continue to provide a range of histological services for the Research Components and Pilot Projects, by providing feedback on stereotaxic coordinates of viral injections, volume of infections, and types of infected cells. The Core will analyze expression of targeted genes by laser capture microdissection combined with quantitative PCR mRNA analysis, and by immunocytochemistry. Core personnel will continue to perform experiments on the cellular localization of signaling proteins, and will further extend detection capabilities by performing high resolution in situ hybridization and immunocytochemistry for signaling proteins in dendrites. Additional Core responsibilities include: oversight of digital stereotaxic equipment, imaging equipment;training in stereotaxic surgical techniques, histology, imaging and image processing;supervising students and postdoctoral trainees;and generating standard procedures for techniques used by the Core. By housing vector and imaging services in one core, efficiency and cost can be optimized since core personnel can focus their skills on techniques that are labor intensive and universal to several research projects. This will allow investigators of Research Components and Pilot Projects to focus on scientific questions involved in studies of specific candidate proteins, while avoiding technical errors and inconsistency in application of methods that the Vector and Imaging Core can perform to manipulate expression of these proteins.

Public Health Relevance

This Core has been a very valuable Component of the ACTG, allowing investigators to manipulate specific proteins in specific brain regions with genetic tools provided by the Core. The work of this Core is essential to the ACTG mission of understanding mechanisms by which novel proteins, identified as possible drug targets for treating alcohol use disorders, function in regulting binge drinking and relapse to alcohol use.

National Institute of Health (NIH)
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZAA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
San Francisco
United States
Zip Code
Barak, Segev; Ahmadiantehrani, Somayeh; Logrip, Marian L et al. (2018) GDNF and alcohol use disorder. Addict Biol :
Ron, Dorit; Berger, Anthony (2018) Targeting the intracellular signaling ""STOP"" and ""GO"" pathways for the treatment of alcohol use disorders. Psychopharmacology (Berl) 235:1727-1743
Blegen, Mariah B; da Silva E Silva, Daniel; Bock, Roland et al. (2018) Alcohol operant self-administration: Investigating how alcohol-seeking behaviors predict drinking in mice using two operant approaches. Alcohol 67:23-36
Vandenberg, Angela; Lin, Wan Chen; Tai, Lung-Hao et al. (2018) Mice engineered to mimic a common Val66Met polymorphism in the BDNF gene show greater sensitivity to reversal in environmental contingencies. Dev Cogn Neurosci 34:34-41
Saunders, Benjamin T; Richard, Jocelyn M; Margolis, Elyssa B et al. (2018) Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties. Nat Neurosci 21:1072-1083
Laguesse, Sophie; Morisot, Nadege; Phamluong, Khanhky et al. (2018) mTORC2 in the dorsomedial striatum of mice contributes to alcohol-dependent F-Actin polymerization, structural modifications, and consumption. Neuropsychopharmacology 43:1539-1547
Bird, C W; Baculis, B C; Mayfield, J J et al. (2018) The brain-derived neurotrophic factor VAL68MET polymorphism modulates how developmental ethanol exposure impacts the hippocampus. Genes Brain Behav :e12484
Blasio, Angelo; Wang, Jingyi; Wang, Dan et al. (2018) Novel Small-Molecule Inhibitors of Protein Kinase C Epsilon Reduce Ethanol Consumption in Mice. Biol Psychiatry 84:193-201
Fan, Qi Wen; Nicolaides, Theodore P; Weiss, William A (2018) Inhibiting 4EBP1 in Glioblastoma. Clin Cancer Res 24:14-21
Wegner, Scott A; Pollard, Katherine A; Kharazia, Viktor et al. (2017) Limited Excessive Voluntary Alcohol Drinking Leads to Liver Dysfunction in Mice. Alcohol Clin Exp Res 41:345-358

Showing the most recent 10 out of 75 publications