Alcohol use disorders (AUDS) impact millions of individuals and constitute one of the most serious public health problems worldwide. Despite its devastating impact on society, only a few effective medications are currently available. Orexins/hypocretins are hypothalamic peptides that act via orexin receptors that have been linked to regulating feeding and sleep. In addition, the orexin system has been shown to play an important role in alcohol self-administration and in stress-induced reinstatement. These effects are thought to be mediated by orexin containing neurons that project from the lateral hypothalamus to the ventral tegmental area (VTA) and nucleus accumbens (NAc) or from the perifornical regions to the amygdala respectively. However, the role of orexins through orexin receptors and their signaling pathway in driving ethanol mediated behaviors is less explored. The overall goal of this research project, component 6 of the NIAAA-Gallo Center application is to determine the role of orexins, orexin receptors and their downstream signaling pathways in different brain regions in ethanol-mediated behaviors. The Center provides a unique opportunity to apply a multidisciplinary approach that integrates behavioral, biochemical and electrophysiological techniques in the latest animal models of binge drinking, ethanol self-administration and stress-induced reinstatement.
The research aims to understand the role of orexin mediated synaptic and cellular mechanisms in the central amygdala, VTA and NAc using behavioral models of alcohol addiction.
In Aim 6. 1, we will determine whether Ox-Rs in the central amygdala drive stress-induced reinstatement of ethanol seeking.
In Aim 6. 2, we will apply electrophysiological and biochemical techniques to dissect the signaling pathways underlying orexins effects in the central amygdala.
In Aim 6. 3, we will determine the mechanism of action of orexins in the VTA and the NAc in regulating binge ethanol consumption and ethanol self-administration. Orexins/hypocretins play a crucial role in addiction, the sleep-wake cycle, motivation and stress, and this provides a strong rationale for our proposed studies, the experiments outlined have been designed specifically to lead to clinical studies aimed at determining the efficacy of orexin receptor antagonists in human subjects with AUDs.

Public Health Relevance

Orexin receptors are novel therapeutic targets implicated in alcohol use disorders (AUDs) and orexin receptor antagonists are currently in Phase III clinical trials for sleep disorders. There is little known about how orexin receptors drive ethanol consumption and stress-induced reinstatement. This project provides a unique opportunity to determine the mechanism of action of orexin receptors in AUDs

National Institute of Health (NIH)
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZAA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
San Francisco
United States
Zip Code
Lei, Kelly; Wegner, Scott A; Yu, Ji-Hwan et al. (2016) Orexin-1 receptor blockade suppresses compulsive-like alcohol drinking in mice. Neuropharmacology 110:431-7
Ron, Dorit; Barak, Segev (2016) Molecular mechanisms underlying alcohol-drinking behaviours. Nat Rev Neurosci 17:576-91
Darcq, Emmanuel; Morisot, Nadege; Phamluong, Khanhky et al. (2016) The Neurotrophic Factor Receptor p75 in the Rat Dorsolateral Striatum Drives Excessive Alcohol Drinking. J Neurosci 36:10116-27
Lei, Kelly; Wegner, Scott A; Yu, Ji-Hwan et al. (2016) A single alcohol drinking session is sufficient to enable subsequent aversion-resistant consumption in mice. Alcohol 55:9-16
Yang, Sungchil; Ben-Shalom, Roy; Ahn, Misol et al. (2016) β-Arrestin-Dependent Dopaminergic Regulation of Calcium Channel Activity in the Axon Initial Segment. Cell Rep 16:1518-26
Laguesse, Sophie; Morisot, Nadege; Phamluong, Khanhky et al. (2016) Region specific activation of the AKT and mTORC1 pathway in response to excessive alcohol intake in rodents. Addict Biol :
Warnault, Vincent; Darcq, Emmanuel; Morisot, Nadege et al. (2016) The BDNF Valine 68 to Methionine Polymorphism Increases Compulsive Alcohol Drinking in Mice That Is Reversed by Tropomyosin Receptor Kinase B Activation. Biol Psychiatry 79:463-73
Beckley, Jacob T; Laguesse, Sophie; Phamluong, Khanhky et al. (2016) The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons. J Neurosci 36:701-13
Blasio, Angelo; Messing, Robert O (2016) Binge Drinking With Protein Kinase C Epsilon: A Role for Mammalian Target of Rapamycin Complex 2? Biol Psychiatry 79:425-6
Maiya, Rajani; McMahon, Thomas; Wang, Dan et al. (2016) Selective chemical genetic inhibition of protein kinase C epsilon reduces ethanol consumption in mice. Neuropharmacology 107:40-8

Showing the most recent 10 out of 57 publications