PROJECT 2 LAGIER TOURENNE ABSTRACT RNA processing alterations are increasingly recognized to play a crucial role in the pathogenesis of a wide range of diseases including two devastating neurodegenerative conditions, frontal temporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The seminal discovery in 2011 of a hexanucleotide expansion in the C9orf72 gene as the most common cause of familial FTD and ALS significantly changed our perspective of these neurodegenerative diseases. The pathogenic mechanisms of this expansion are not understood, however, with initial observations pointing to either a loss of function of the endogenous C9orf72 gene or an RNA toxicity mechanism. The later, initially described in other repeat-expansion diseases, corresponds to the sequestration of one or more RNA binding protein(s) by expanded RNAs leading to broad misregulation of RNA processing. In this project, we will characterize mice modeling either a loss of C9orf72 function or a toxic gain of function to unravel the relative contributions of each mechanism and identify animal models strongly needed by the community to tackle FTD and ALS. In a second approach, we will use state of the art methods in sequencing to obtain an unbiased RNA profile in these model mice and in post-mortem tissues from ALS and FTD patients. Defining a set of RNA alterations that delineate a disease-dependent molecular signature is an important step toward the development of therapeutic strategies. In particular, the combination of the proposed approaches will provide crucial information to evaluate the safety and pertinence of a potential therapeutic strategy to reduce C9orf72 expression using antisense oligonucleotides (ASOs) that induce degradation of RNAs carrying the C9orf72 hexanucleotide expansion.

Public Health Relevance

PROJECT 2: LAGIER-TOURENNE- PROJECT NARRATIVE The most frequent cause of two devastating neurodegenerative diseases amyotrophic lateral sclerosis (ALS) (also called Lou Gehrig's disease) and frontotemporal dementia (FTD) has recently been identified in the uncharacterized C9orf72 gene. We will use state of the art sequencing approaches to identify disease mechanisms and provide tools leveraging therapeutic strategies.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4 (J1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
La Jolla
United States
Zip Code
Edmonds, Emily C; Delano-Wood, Lisa; Clark, Lindsay R et al. (2015) Susceptibility of the conventional criteria for mild cognitive impairment to false-positive diagnostic errors. Alzheimers Dement 11:415-24
Dhungel, Nripesh; Eleuteri, Simona; Li, Ling-Bo et al. (2015) Parkinson's disease genes VPS35 and EIF4G1 interact genetically and converge on ?-synuclein. Neuron 85:76-87
Bangen, Katherine J; Nation, Daniel A; Delano-Wood, Lisa et al. (2015) Aggregate effects of vascular risk factors on cerebrovascular changes in autopsy-confirmed Alzheimer's disease. Alzheimers Dement 11:394-403.e1
Donohue, Michael C; Moghadam, Setareh H; Roe, Allyson D et al. (2015) Longitudinal plasma amyloid beta in Alzheimer's disease clinical trials. Alzheimers Dement 11:1069-79
Edmonds, Emily C; Delano-Wood, Lisa; Galasko, Douglas R et al. (2014) Subjective cognitive complaints contribute to misdiagnosis of mild cognitive impairment. J Int Neuropsychol Soc 20:836-47
Overk, Cassia R; Masliah, Eliezer (2014) Pathogenesis of synaptic degeneration in Alzheimer's disease and Lewy body disease. Biochem Pharmacol 88:508-16
Yu, Peng; Sun, Jia; Wolz, Robin et al. (2014) Operationalizing hippocampal volume as an enrichment biomarker for amnestic mild cognitive impairment trials: effect of algorithm, test-retest variability, and cut point on trial cost, duration, and sample size. Neurobiol Aging 35:808-18
Nuber, Silke; Tadros, Daniel; Fields, Jerel et al. (2014) Environmental neurotoxic challenge of conditional alpha-synuclein transgenic mice predicts a dopaminergic olfactory-striatal interplay in early PD. Acta Neuropathol 127:477-94
Wang, Lina; Das, Utpal; Scott, David A et al. (2014) ?-synuclein multimers cluster synaptic vesicles and attenuate recycling. Curr Biol 24:2319-26
Shi, Min; Liu, Changqin; Cook, Travis J et al. (2014) Plasma exosomal ?-synuclein is likely CNS-derived and increased in Parkinson's disease. Acta Neuropathol 128:639-50

Showing the most recent 10 out of 484 publications