The long term objective of this research approach is the development of an assay capable of assessing changes in the potential for plasticity that may occur in neurons in demential and aging. We have chosen the gene encoding the nerve terminal-specific protein synapsin as the experimental paradigm.
The specific aim of the project is the investigation of changes in the expression of this gene encoding the nerve terminal-specific protein synapsin as the experimental paradigm.
The specific aim of the project is the investigation of changes in the expression of this gene in dementia and during normal aging of the central nervous system. The hypothesis to be tested is whether assays of synapsin gene expressing can be used as sensitive indicators of changes in the developmental status, maturation and viability of neurons. The techniques to be employed for the assessment of synapsin gene expression in human and rat brain are: 1) RNA blot analysis of steady- state levels of synapsin mRNA; 2) nuclear run-off assay of changes in synapsin gene transcription; 3) correlation of temporal and spatial changes in synapsin mRNA levels by in situ hybridization histochemistry. The loss or impairment of synaptic connections in critical areas of the brain may produce important deficits, including those of memory, cognitive and behavioral function, associated with Alzheimer's Disease. The establishment of an assay capable of monitoring changes in neuronal plasticity may yield insight into the molecular basis of these changes.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005134-07
Application #
3809175
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
1990
Total Cost
Indirect Cost
Name
Harvard University
Department
Type
DUNS #
082359691
City
Boston
State
MA
Country
United States
Zip Code
02115
Jacobs, Heidi I L; Hedden, Trey; Schultz, Aaron P et al. (2018) Structural tract alterations predict downstream tau accumulation in amyloid-positive older individuals. Nat Neurosci 21:424-431
Rieckmann, Anna; Johnson, Keith A; Sperling, Reisa A et al. (2018) Dedifferentiation of caudate functional connectivity and striatal dopamine transporter density predict memory change in normal aging. Proc Natl Acad Sci U S A 115:10160-10165
Burke, Shanna L; Maramaldi, Peter; Cadet, Tamara et al. (2018) Decreasing hazards of Alzheimer's disease with the use of antidepressants: mitigating the risk of depression and apolipoprotein E. Int J Geriatr Psychiatry 33:200-211
Martinez-Ramirez, Sergi; van Rooden, Sanneke; Charidimou, Andreas et al. (2018) Perivascular Spaces Volume in Sporadic and Hereditary (Dutch-Type) Cerebral Amyloid Angiopathy. Stroke 49:1913-1919
Qian, Winnie; Fischer, Corinne E; Schweizer, Tom A et al. (2018) Association Between Psychosis Phenotype and APOE Genotype on the Clinical Profiles of Alzheimer's Disease. Curr Alzheimer Res 15:187-194
Putcha, Deepti; McGinnis, Scott M; Brickhouse, Michael et al. (2018) Executive dysfunction contributes to verbal encoding and retrieval deficits in posterior cortical atrophy. Cortex 106:36-46
Qian, Jing; Chiou, Sy Han; Maye, Jacqueline E et al. (2018) Threshold regression to accommodate a censored covariate. Biometrics :
Mordes, Daniel A; Prudencio, Mercedes; Goodman, Lindsey D et al. (2018) Dipeptide repeat proteins activate a heat shock response found in C9ORF72-ALS/FTLD patients. Acta Neuropathol Commun 6:55
Makaretz, Sara J; Quimby, Megan; Collins, Jessica et al. (2018) Flortaucipir tau PET imaging in semantic variant primary progressive aphasia. J Neurol Neurosurg Psychiatry 89:1024-1031
Gallagher, Damien; Kiss, Alex; Lanctot, Krista et al. (2018) Depression and Risk of Alzheimer Dementia: A Longitudinal Analysis to Determine Predictors of Increased Risk among Older Adults with Depression. Am J Geriatr Psychiatry 26:819-827

Showing the most recent 10 out of 966 publications