The overarching objective of the Massachusetts Alzheimer's Disease Research Center (MADRC) is to stimulate and support research of the highest quality in aging, Alzheimer's disease (AD), and related disorders. The specific goals are: To propose and support new research directed toward uncovering the etiology and pathogenetic mechanisms of AD and related dementias;to enhance collaborative research funded outside of the MADRC;and to catalyze education, training and information transfer related to dementia. Administrative, Clinical, Data and Statistical, Neuropathology, and Education Cores support 3 R01 style 5 year projects and 3 pilot projects/year. The Clinical Core has established a Longitudinal Cohort that follows ~600 individuals who are cognitively normal, have mild impairments, mild AD or other dementias. These subjects undergo full Uniform Data Set evaluations and data are submitted to NACC. Our retention rate to date (93% 1 year;97% 2 year) shows that these individuals are committed to participate in longitudinal studies. Over 60% of these individuals have already also contributed to at least one other research project related to aging and cognition, including 7 different neuroimaging studies and a major Biomarkers program. The Neuropathology Core has tissues on nearly 1400 subjects, and in the last 4 years supplied 3 dozen separate investigators with over 10,000 slides or specimens. The Data and Statistics Core has built a new state of the art data repository. The Education Core has continued its mission of outstanding community involvement, and has enhanced recruitment for MADRC programs. Three R01 style applications are closely linked to Core activities, and focus on the relationship between amyloid, clinical symptoms, and neurotoxicity: Two relate to longitudinal studies in MADRC subjects. The first asks what does positive PIB amyloid imaging mean in the setting of normal cognition? The second, led by a junior investigator, examines whether amyloid deposition in vessels (CAA) alters the course of dementia. The third project utilizes MADRC brain bank material to examine whether oligomeric forms of amyloid - in addition to, or instead of, fibrillar forms - are neurotoxic. The MADRC provides infrastructure to support local and national efforts in AD research: In the current grant period 44 investigators used MADRC resources to support 76 NIH funded projects;an additional 68 projects supported by non-Federal sources relied in part on MADRC for subjects or other resources. Going forward, the MADRC will continue to expand its clinical and neuropathological resources, its innovative training and scientific programs directed toward AD research.

Public Health Relevance

Alzheimer's disease is a devastating disorder of cognition causing dementia in millions of Americans. Our studies use clinical and laboratory tools to characterize the earliest phases of the disease, and to try to better understand the underlying causes of the brain damage that leads to dementia.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
2P50AG005134-26
Application #
7620491
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4 (J1))
Program Officer
Phelps, Creighton H
Project Start
1997-04-01
Project End
2014-03-31
Budget Start
2009-05-01
Budget End
2010-03-31
Support Year
26
Fiscal Year
2009
Total Cost
$1,989,373
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Gallagher, Damien; Kiss, Alex; Lanctot, Krista et al. (2018) Depression and Risk of Alzheimer Dementia: A Longitudinal Analysis to Determine Predictors of Increased Risk among Older Adults with Depression. Am J Geriatr Psychiatry 26:819-827
Makaretz, Sara J; Quimby, Megan; Collins, Jessica et al. (2018) Flortaucipir tau PET imaging in semantic variant primary progressive aphasia. J Neurol Neurosurg Psychiatry 89:1024-1031
Haaksma, Miriam L; Calderón-Larrañaga, Amaia; Olde Rikkert, Marcel G M et al. (2018) Cognitive and functional progression in Alzheimer disease: A prediction model of latent classes. Int J Geriatr Psychiatry 33:1057-1064
Davis, Jeremy J (2018) Performance validity in older adults: Observed versus predicted false positive rates in relation to number of tests administered. J Clin Exp Neuropsychol 40:1013-1021
Wimalaratne, Sarala M; Juty, Nick; Kunze, John et al. (2018) Uniform resolution of compact identifiers for biomedical data. Sci Data 5:180029
Lin, Ming; Gong, Pinghua; Yang, Tao et al. (2018) Big Data Analytical Approaches to the NACC Dataset: Aiding Preclinical Trial Enrichment. Alzheimer Dis Assoc Disord 32:18-27
Ramsey, Christine M; Gnjidic, Danijela; Agogo, George O et al. (2018) Longitudinal patterns of potentially inappropriate medication use following incident dementia diagnosis. Alzheimers Dement (N Y) 4:1-10
Woerman, Amanda L; Kazmi, Sabeen A; Patel, Smita et al. (2018) Familial Parkinson's point mutation abolishes multiple system atrophy prion replication. Proc Natl Acad Sci U S A 115:409-414
Woerman, Amanda L; Kazmi, Sabeen A; Patel, Smita et al. (2018) MSA prions exhibit remarkable stability and resistance to inactivation. Acta Neuropathol 135:49-63
Kirson, Noam Y; Scott Andrews, J; Desai, Urvi et al. (2018) Patient Characteristics and Outcomes Associated with Receiving an Earlier Versus Later Diagnosis of Probable Alzheimer's Disease. J Alzheimers Dis 61:295-307

Showing the most recent 10 out of 966 publications