The Massachusetts Alzheimer's Disease Research Center, established in 1984, proposes to continue and expand its research into the underpinnings of Alzheimer's and related dementias with 5 major goals. First, we will focus on the earliest stages of the disease process, when symptoms and signs are subtle, or even undetectable, by bringing to bear an integrated multidisciplinary team of clinicians and scientists. Second, we will continue to provide critical infrastructure and resources to support Alzheimer disease and dementia related research across a range of institutions including Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, and the Harvard School of Public Health as well as supporting national initiatives. Third, we will innovate with technical developmental projects in each Core, targeting the boundaries of cognitive ageing and disease. Fourth, we are committed to mentoring, educating, and developing future leaders through formal training or mentoring programs in each Core. Fifth, we continue to reach out to the surrounding community in order to communicate the urgency of understanding this devastating disease, and to enhance recruitment of a diverse pool of subjects and patients for critical studies. These broad aims are distributed among the mandated Administration, Clinical, Data Management and Statistics, Neuropathology and Outreach Cores, along with a new Neuroimaging Core. Each Core provides support for, and helps catalyze, the MADRC's mission, including active participation in national programs (e.g. NACC, ADNI, ADCS, ADGC, DIAN), more than 40 local clinical initiatives, and pilot projects. Three small R01 style projects leverage these Cores and are designed to marry cutting edge science with the clinical programs. Project 1, led by a new junior investigator, Dr Hedden, uses state-of-the art fMRI and Connectome techniques (a new technology that illuminates white matter pathways) as well as quantitative structural MRI approaches to study the neural system basis of the earliest cognitive impairments. Project 2, led by Dr Gomez-Isla (a senior investigator recruited to our Center in the current grant period) combines resources with 5 other ADCs to define the neuropathological phenotype of individuals who are amyloid imaging-positive and cognitively normal. Project 3, led by Dr Hyman, explores a new transgenic mouse model of Alzheimer disease that develops tangles in entorhinal cortex and widespread plaques and compares it to human neuropathological samples - to examine experimentally the neural system biology of this early point in the disease process. Together these efforts are aimed at targeting early disease phenotypes - as national efforts towards early intervention and prevention strategies unfold. Along with parallel ongoing multidisciplinary studies of established dementias, we believe the MADRC has made, and is well positioned to continue to make, strong contributions to Alzheimer research.

Public Health Relevance

The Massachusetts Alzheimer Disease Research Center is an integrated program of clinicians and scientists focused on understanding and contributing to the care and treatment of patients with Alzheimer's disease and similar disorders. Our major focal point is on learning about early disease manifestations - ideally during the period of the disease even before clear symptoms have emerged. We plan complementary clinical, neuroimaging, neuropathological, and laboratory studies that cut across many disciplines. Each element of the study contributes to National programs, and also serves as a vessel for innovation and for teaching of the next generation of investigators targeting this devastating disease.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4 (J1))
Program Officer
Phelps, Creighton H
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Viswanathan, Anand; Greenberg, Steven M; Scheltens, Philip (2016) Role of Vascular Disease in Alzheimer-Like Progressive Cognitive Impairment. Stroke 47:577-80
Dhilla Albers, Alefiya; Asafu-Adjei, Josephine; Delaney, Mary K et al. (2016) Episodic memory of odors stratifies Alzheimer biomarkers in normal elderly. Ann Neurol 80:846-857
Day, Gregory S; Musiek, Erik S; Roe, Catherine M et al. (2016) Phenotypic Similarities Between Late-Onset Autosomal Dominant and Sporadic Alzheimer Disease: A Single-Family Case-Control Study. JAMA Neurol 73:1125-32
Ronquillo, Jay Geronimo; Baer, Merritt Rachel; Lester, William T (2016) Sex-specific patterns and differences in dementia and Alzheimer's disease using informatics approaches. J Women Aging 28:403-11
Herold, C; Hooli, B V; Mullin, K et al. (2016) Family-based association analyses of imputed genotypes reveal genome-wide significant association of Alzheimer's disease with OSBPL6, PTPRG, and PDCL3. Mol Psychiatry 21:1608-1612
Serrano-Pozo, Alberto; Betensky, Rebecca A; Frosch, Matthew P et al. (2016) Plaque-Associated Local Toxicity Increases over the Clinical Course of Alzheimer Disease. Am J Pathol 186:375-84
Ridge, Perry G; Hoyt, Kaitlyn B; Boehme, Kevin et al. (2016) Assessment of the genetic variance of late-onset Alzheimer's disease. Neurobiol Aging 41:200.e13-20
Ringman, John M; Monsell, Sarah; Ng, Denise W et al. (2016) Neuropathology of Autosomal Dominant Alzheimer Disease in the National Alzheimer Coordinating Center Database. J Neuropathol Exp Neurol 75:284-90
Grogg, Kira S; Toole, Terrence; Ouyang, Jinsong et al. (2016) National Electrical Manufacturers Association and Clinical Evaluation of a Novel Brain PET/CT Scanner. J Nucl Med 57:646-52
Rentz, Dorene M; Dekhtyar, Maria; Sherman, Julia et al. (2016) The Feasibility of At-Home iPad Cognitive Testing For Use in Clinical Trials. J Prev Alzheimers Dis 3:8-12

Showing the most recent 10 out of 717 publications