The Neuroimaging Core is a newly proposed Core that will greatly enhance the imaging capabilities of the Massachusetts ADRC (MADRC). The Imaging Core will leverage MADRC investigator expertise in molecular, functional, and structural imaging and the state-of-the-art resources of the Martinos Center for Biomedical Imaging and the Massachusetts General Hospital PET Core to augment our Center's strengths in cutting edge, multi-modality imaging research. The Imaging Core will provide direct support for Project 1 (Hedden) and Project 2 (Gomez-Isla) through volumetric and functional connectivity MRI and PET amyloid imaging data acquisition and analyses. We will also continue to support the imaging components of other MADRC investigator led projects, including ongoing NIH funded PPG, R01s, K23, multiple foundation grants and future MADRC pilot grants. Working closely with the Clinical and Data Cores, the Imaging Core will support standardized acquisition protocols and catalogued storage of neuroimaging data collected on subjects in the MADRC Longitudinal Cohort participating in MADRC affiliated imaging research projects. We will also acquire MRI (3T) and PET amyloid imaging on a small number of LC subjects of special interest to our center and will provide these data to Projects 1 and 2, as well as to other MADRC affiliated studies with appropriate IRB approval. We will facilitate the implementation of new PET tracers, currently being tested in affiliated projects, including recently developed PET ligands for tau, inflammation, and mGluR5 into MADRC affiliated research studies. Similarly, we will facilitate the implementation of novel MRI methods and analytic tools, such as functional connectivity, the connectome scanner, and cortical thickness signatures into new and ongoing MADRC projects. The Imaging Core will further enhance MADRC's active involvement in national multi-center projects with major neuroimaging components, including ADNI, DIAN, NIFD, NIH and industry sponsored multi-center clinical trials, including the upcoming ADCS Anti-Amyloid Treatment in Asymptomatic AD (A4) trial. We will work closely with the Outreach Core to lead national efforts to educate the public and health care professionals about the appropriate clinical use of PET amyloid imaging and with the ADCS and collaborating ADRCs on important issues related to disclosure of amyloid status to research participants. We will provide expertise on multi-modality image acquisition and analysis to young investigators interested in incorporating neuroimaging into pilot projects and career development proposals. Neuroimaging is likely to play an even more integral role in AD clinical research over the next 5 years. This new Imaging Core will work closely with the existing MADRC cores, substantially augment our ability to provide frontline support to MADRC affiliated imaging studies, including two of the research projects proposed for the renewal, and will facilitate new collaborations both within our Center and with other ADCs.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4 (J1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Mattos, Meghan K; Snitz, Beth E; Lingler, Jennifer H et al. (2017) Older Rural- and Urban-Dwelling Appalachian Adults With Mild Cognitive Impairment. J Rural Health 33:208-216
Moga, Daniela C; Abner, Erin L; Wu, Qishan et al. (2017) Bladder antimuscarinics and cognitive decline in elderly patients. Alzheimers Dement (N Y) 3:139-148
Wachinger, Christian; Reuter, Martin; Klein, Tassilo (2017) DeepNAT: Deep convolutional neural network for segmenting neuroanatomy. Neuroimage :
Sennik, Simrin; Schweizer, Tom A; Fischer, Corinne E et al. (2017) Risk Factors and Pathological Substrates Associated with Agitation/Aggression in Alzheimer's Disease: A Preliminary Study using NACC Data. J Alzheimers Dis 55:1519-1528
Marquié, Marta; Verwer, Eline E; Meltzer, Avery C et al. (2017) Lessons learned about [F-18]-AV-1451 off-target binding from an autopsy-confirmed Parkinson's case. Acta Neuropathol Commun 5:75
Wang, Zemin; Jackson, Rosemary J; Hong, Wei et al. (2017) Human Brain-Derived A? Oligomers Bind to Synapses and Disrupt Synaptic Activity in a Manner That Requires APP. J Neurosci 37:11947-11966
Liu, Ganqiang; Locascio, Joseph J; Corvol, Jean-Christophe et al. (2017) Prediction of cognition in Parkinson's disease with a clinical-genetic score: a longitudinal analysis of nine cohorts. Lancet Neurol 16:620-629
Neu, Scott C; Pa, Judy; Kukull, Walter et al. (2017) Apolipoprotein E Genotype and Sex Risk Factors for Alzheimer Disease: A Meta-analysis. JAMA Neurol 74:1178-1189
Xia, Chenjie; Makaretz, Sara J; Caso, Christina et al. (2017) Association of In Vivo [18F]AV-1451 Tau PET Imaging Results With Cortical Atrophy and Symptoms in Typical and Atypical Alzheimer Disease. JAMA Neurol 74:427-436
Dickerson, Bradford C; McGinnis, Scott M; Xia, Chenjie et al. (2017) Approach to atypical Alzheimer's disease and case studies of the major subtypes. CNS Spectr 22:439-449

Showing the most recent 10 out of 858 publications