Brain amyloidosis is a constant feature of Alzheimer's disease (AD);almost all patients with AD have high uptake of PET amyloid-binding radioligands such as PiB when scanned during life and extensive amyloid deposits at death. Cognitively normal individuals who have amyloid positive PET scans however present an unresolved conundrum: are they on the road to AD and will develop dementia given enough time, or do their brains have specific features that render them less vulnerable to the neurotoxic effects of A. This project will directly address this question by defining the neuropathological phenotype of individuals who are amyloid imaging positive and cognitively normal and document differences with those who are amyloid imaging positive and cognitively impaired. Further, by conducting detailed analyses of the pathological changes that occur during the earliest point in disease, we will be able to identify the evolution of changes that lead to dementia symptoms and identify useful surrogate markers to guide early diagnosis such as novel in vivo neuroimaging techniques. We will test these major hypotheses: 1) neuronal loss in the entorhinal cortex builds gradually during the preclinical phase of AD before an individual becomes symptomatic;2) soluble oligomeric A levels will be greater in the impaired cases: 3) non-amyloid changes, such as tau lesions, will correlate closely with neuronal loss in amyloid imaging positive cases and 4) synaptic loss and glia activation will correlate with clinical symptoms and mark the transition to symptomatic stages;these changes will be less prominent in the resilient cases. In order to accomplish these goals, we have established working collaborations with four other ADCs (Mayo, University of Pittsburgh, Washington University and Columbia) to share clinical and neuroimaging data as well as brain tissue from three groups of subjects: Amyloid imaging positive and cognitively normal, amyloid imaging positive and cognitively impaired, and amyloid imaging negative and cognitively normal. By identifying neurobiologic factors that occur during the years after amyloid begins to accumulate but before symptoms manifest, we will set the stage for guiding the next generation of neuroimaging and other diagnostic tests as well as define rational targets for future effective therapeutic interventions.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
2P50AG005134-31
Application #
8676357
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4 (J1))
Project Start
2014-04-01
Project End
2019-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
31
Fiscal Year
2014
Total Cost
$217,500
Indirect Cost
$92,500
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Wilmoth, Kristin; LoBue, Christian; Clem, Matthew A et al. (2018) Consistency of traumatic brain injury reporting in older adults with and without cognitive impairment. Clin Neuropsychol 32:524-529
Quiroz, Yakeel T; Sperling, Reisa A; Norton, Daniel J et al. (2018) Association Between Amyloid and Tau Accumulation in Young Adults With Autosomal Dominant Alzheimer Disease. JAMA Neurol 75:548-556
Ting, Simon Kang Seng; Foo, Heidi; Chia, Pei Shi et al. (2018) Dyslexic Characteristics of Chinese-Speaking Semantic Variant of Primary Progressive Aphasia. J Neuropsychiatry Clin Neurosci 30:31-37
Burke, Shanna L; Hu, Tianyan; Fava, Nicole M et al. (2018) Sex differences in the development of mild cognitive impairment and probable Alzheimer's disease as predicted by hippocampal volume or white matter hyperintensities. J Women Aging :1-25
Dujardin, Simon; Bégard, Séverine; Caillierez, Raphaëlle et al. (2018) Different tau species lead to heterogeneous tau pathology propagation and misfolding. Acta Neuropathol Commun 6:132
Wang, Qi; Guo, Lei; Thompson, Paul M et al. (2018) The Added Value of Diffusion-Weighted MRI-Derived Structural Connectome in Evaluating Mild Cognitive Impairment: A Multi-Cohort Validation1. J Alzheimers Dis 64:149-169
Wang, Tingyan; Qiu, Robin G; Yu, Ming (2018) Predictive Modeling of the Progression of Alzheimer's Disease with Recurrent Neural Networks. Sci Rep 8:9161
DeVos, Sarah L; Corjuc, Bianca T; Commins, Caitlin et al. (2018) Tau reduction in the presence of amyloid-? prevents tau pathology and neuronal death in vivo. Brain 141:2194-2212
Lee, Christopher M; Jacobs, Heidi I L; Marquié, Marta et al. (2018) 18F-Flortaucipir Binding in Choroid Plexus: Related to Race and Hippocampus Signal. J Alzheimers Dis 62:1691-1702
Eftekharzadeh, Bahareh; Daigle, J Gavin; Kapinos, Larisa E et al. (2018) Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer's Disease. Neuron 99:925-940.e7

Showing the most recent 10 out of 966 publications