Project 2 in the Johns Hopkins Alzheimer's Disease Research Center (ADRC) is entitled """"""""The roles of AB, tau and synaptic loss in early AD"""""""". The overarching goal of this project is to understand the mechanisms that allow some individuals to tolerate substantial Alzheimer's disease (AD) pathology, whereas others with similar brain abnormalities develop MCI or dementia. We will use a collection of brains from prospectively followed subjects from the ADRC, known as the Johns Hopkins ADRC Autopsy Cohort (JHAAC). The JHAAC includes brain tissue from a substantial number of subjects who were cognitively normal shortly before death, but were found to have substantial AD pathology on autopsy, referred to as 'asymptomatic AD'. The JHAAC also includes brain tissue from controls, subjects with MCI and patients with AD. We will examine three hypotheses in this project.
Aim 1 : We will test the hypothesis that amyloid-beta (AP) oligomers, not AB deposits, are responsible for cognitive decline. We will determine whether AP40, AP42 and AB oligomers distinguish the cognitive phenotypes of subjects with similar levels of AD pathology, as measured by the standard Braak and CERAD scales. In addition, we will examine whether the significant AB accumulation seen in the brains of the subset of cognitively normal subjects with substantial AD pathology is due to quantitative differences in the amount, bioactivity or distribution of enzymes purported to degrade or transport AB in vivo.
Aim 2 : We will test the hypothesis that the process that couples AB deposition with neuronal/synaptic abnormalities is associated with Tau phosphorylation or cleavage. We propose to quantitate the amount of Tau phosphorylation and fragmentation in JHAAC brain specimens to determine the strength of the relationship between these biochemical changes and cognitive status. We will also examine whether quantitative differences in the regional distribution of AB monomers, AB oligomers or glycogen synthetase kinase (GSK) 3a and 3B are associated with Tau phosphorylation or cleavage.
Aim 3 : On the assumption that synaptic dysfunction and degeneration underlies the cognitive impairment in AD, we will test the hypothesis that enhanced synaptic plasticity allows for normal cognition in the face of significant AD pathology.

Public Health Relevance

Understanding the biochemical mechanisms that underiie the accumulation of Alzheimer's pathology in the brains of some elderiy subjects (amyloid plaques and neurofibrillary tangles) and determining why some subjects with Alzheimer's pathology become demented and others remain cognitively normal is of crucial importance in developing strategies to combat Alzheimer's disease, a neurodegenerative disorder which affects over 6 million Americans.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005146-30
Application #
8448153
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
30
Fiscal Year
2013
Total Cost
$219,843
Indirect Cost
$85,792
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Bouhrara, Mustapha; Reiter, David A; Bergeron, Christopher M et al. (2018) Evidence of demyelination in mild cognitive impairment and dementia using a direct and specific magnetic resonance imaging measure of myelin content. Alzheimers Dement 14:998-1004
Xiong, Yulan; Neifert, Stewart; Karuppagounder, Senthilkumar S et al. (2018) Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice. Proc Natl Acad Sci U S A 115:1635-1640
Nicolas, Aude (see original citation for additional authors) (2018) Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron 97:1268-1283.e6
Wong, Dean F; Comley, Robert A; Kuwabara, Hiroto et al. (2018) Characterization of 3 Novel Tau Radiopharmaceuticals, 11C-RO-963, 11C-RO-643, and 18F-RO-948, in Healthy Controls and in Alzheimer Subjects. J Nucl Med 59:1869-1876
Kirson, Noam Y; Scott Andrews, J; Desai, Urvi et al. (2018) Patient Characteristics and Outcomes Associated with Receiving an Earlier Versus Later Diagnosis of Probable Alzheimer's Disease. J Alzheimers Dis 61:295-307
Varma, Vijay R; Oommen, Anup M; Varma, Sudhir et al. (2018) Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study. PLoS Med 15:e1002482
Zhou, Zilu; Wang, Weixin; Wang, Li-San et al. (2018) Integrative DNA copy number detection and genotyping from sequencing and array-based platforms. Bioinformatics 34:2349-2355
Soldan, Anja; Pettigrew, Corinne; Albert, Marilyn (2018) Evaluating Cognitive Reserve Through the Prism of Preclinical Alzheimer Disease. Psychiatr Clin North Am 41:65-77
Guerreiro, Rita; Ross, Owen A; Kun-Rodrigues, Celia et al. (2018) Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurol 17:64-74
Bermudez, Camilo; Plassard, Andrew J; Davis, Taylor L et al. (2018) Learning Implicit Brain MRI Manifolds with Deep Learning. Proc SPIE Int Soc Opt Eng 10574:

Showing the most recent 10 out of 830 publications