Amyloid protein fibrils are associated with a group of devastating human diseases. The precise etiologic agents for these medical conditions remain undefined, but in several cases appear to be protein fibrils or pre-fibrillar oligomers. Currently there is no approved therapeutic agent that regulates the formation of amyloid fibrils and reverses the symptoms. Our working hypothesis is that interfering with amyloid fibrillation and oligomerization is of clinical benefit to patients suffering from Alzheimer's and other amyloid diseases. Amyloid proteins lack common sequence motifs;nevertheless, they display similar biophysical characteristics and a common 'cross-B spine'structure. The first fully objective atomic model of the common B-spine structure of a fibril-forming peptide was determined in our lab, and additional structures are already available. Based on these atomic structures, we are able to design inhibitors. Our recently designed peptide inhibitors of tau fibrils, based on the structure of the amyloid spines of the tau protein determined in our lab, interfere with fibrillation of tau. We plan to improve the bioavailability and potency of these inhibitors and to design similar peptide inhibitors against Amyloid-beta (AB) fibrils. In recent years several compounds were shown by others to inhibit fibrillation, although the molecular mechanism of this interference is not yet clear. We will determine crystal structures of the fibrils bound to various inhibitors that will advance our understanding of the mechanism of inhibition of fibrils and small oligomers by small molecule inhibitors. The structure determination will be coupled to a computational approach to detect non-toxic, specific and potent inhibitors that will cross the blood-brain-barrier and will bind strongly to fibrils and oligomers. Another important application of this study is to find compounds that could be useful as markers for fibrils in biochemical assays as well as in the diagnosis of fibrils in-vivo. Our project is consistent with the aims of """"""""The Therapeutic Imperative"""""""", and our proposal involves dose collaboration with members of the ADRC community.

Public Health Relevance

New treatment for Alzheimer's disease are urgently needed. Alzheimers appears to result from proteins that change their structure and kill nerve cells. This project will develop treatments that keep the proteins from changing structures. These agents may be new treatments for Alzheimer's disease.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG016570-13
Application #
8440889
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
13
Fiscal Year
2012
Total Cost
$165,437
Indirect Cost
$39,433
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Jutkowitz, Eric; MacLehose, Richard F; Gaugler, Joseph E et al. (2017) Risk Factors Associated With Cognitive, Functional, and Behavioral Trajectories of Newly Diagnosed Dementia Patients. J Gerontol A Biol Sci Med Sci 72:251-258
Sokolow, Sophie; Li, Xiaohui; Chen, Lucia et al. (2017) Deleterious Effect of Butyrylcholinesterase K-Variant in Donepezil Treatment of Mild Cognitive Impairment. J Alzheimers Dis 56:229-237
Ringman, John M; Casado, Maria; Van Berlo, Victoria et al. (2017) A novel PSEN1 (S230N) mutation causing early-onset Alzheimer's Disease associated with prosopagnosia, hoarding, and Parkinsonism. Neurosci Lett 657:11-15
Jefferson-George, Kyra S; Wolk, David A; Lee, Edward B et al. (2017) Cognitive decline associated with pathological burden in primary age-related tauopathy. Alzheimers Dement 13:1048-1053
Katsumata, Yuriko; Nelson, Peter T; Ellingson, Sally R et al. (2017) Gene-based association study of genes linked to hippocampal sclerosis of aging neuropathology: GRN, TMEM106B, ABCC9, and KCNMB2. Neurobiol Aging 53:193.e17-193.e25
Ringman, John M (2017) Update on Alzheimer's and the Dementias: Introduction. Neurol Clin 35:171-174
Qian, Jing; Hyman, Bradley T; Betensky, Rebecca A (2017) Neurofibrillary Tangle Stage and the Rate of Progression of Alzheimer Symptoms: Modeling Using an Autopsy Cohort and Application to Clinical Trial Design. JAMA Neurol 74:540-548
Chang, Timothy S; Teng, Edmond; Elashoff, David et al. (2017) Optimizing Effect Sizes With Imaging Enrichment and Outcome Choices for Mild Alzheimer Disease Clinical Trials. Alzheimer Dis Assoc Disord 31:19-26
Blanken, Anna E; Hurtz, Sona; Zarow, Chris et al. (2017) Associations between hippocampal morphometry and neuropathologic markers of Alzheimer's disease using 7 T MRI. Neuroimage Clin 15:56-61
Kim, Julia; Schweizer, Tom A; Fischer, Corinne E et al. (2017) The Role of Cerebrovascular Disease on Cognitive and Functional Status and Psychosis in Severe Alzheimer's Disease. J Alzheimers Dis 55:381-389

Showing the most recent 10 out of 704 publications