For many neurological disorders including Alzheimer Disease (AD), current therapies are largely palliative and based on small molecule designs. However, studies have begun to examine the use of stem cells to both treat and model neurodegenerative disease. Although stem cells have been suggested as a potential therapy for AD, to date this approach has not been directly tested in animal models. Consequently, it is critical to obtain pre-clinical evidence to determine whether neural stem cell (NSC) transplantation can offer symptomatic or disease-modifying effects for AD. In preliminary studies, we have found that short-term transplantation of murine NSCs into aged triple transgenic mice (3xTg-AD) improves cognitive function. Interestingly, NSCs rescue cognition not by differentiating into neurons or altering levels of AB or tau, but rather by increasing levels of brain-derived neurotrophic factor and enhancing endogenous hippocampal synaptic connectivity. These initial findings suggest that NSC transplantation may provide a promising therapeutic approach. However, AD manifests as a long-term and progressive illness. Thus, it is critical to determine whether NSC transplantation can provide benefits across an extended duration. Here we propose to perform a longitudinal examination of the effect of NSC transplantation on AD-related cognitive function in 3xTg-AD mice. We hypothesize that the long-term effectiveness of NSC-based therapies can be improved upon by combining both trophic and disease-modifying approaches. Thus, we will also examine whether NSCs engineered to express an AB-degrading enzyme can provide more substantial long-term benefit. In addition to their potential therapeutic use, stem cells are being actively studied as a novel and powerful approach to model human disease. To begin to examine the use of stem cells to model AD we therefore propose to generate induced pluripotent stem cells (iPSCs) from AD and control patient fibroblasts Comparisons of AB and tau and their various assembly and phosphorylation states will determine whether genetic factors influence the production, oligomerization, or degradation of these proteins. Likewise analysis of the survival of iPSC-derived neurons in response to AB oligomer treatment will be examined to determine whether AD iPSC-derived neurons are innately more susceptible to disease-related insults.

Public Health Relevance

The proposed studies build upon our preliminary data to investigate the long-term benefit of neural stem cell transplantation as a potential treatment for Alzheimer Disease (AD). By generating and studying induced pluripotent stem cells (iPSCs) form AD and control patients we will also begin to examine the utility of stem cells to model sporadic AD. The proposed studies thus have relevance to both the potential future treatment and future study of AD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG016573-14
Application #
8450807
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
14
Fiscal Year
2013
Total Cost
$179,495
Indirect Cost
$62,014
Name
University of California Irvine
Department
Type
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Mitchell, Joel C; Dick, Malcolm B; Wood, Amanda E et al. (2015) The utility of the Dementia Severity Rating Scale in differentiating mild cognitive impairment and Alzheimer disease from controls. Alzheimer Dis Assoc Disord 29:222-8
Robinson, John L; Molina-Porcel, Laura; Corrada, Maria M et al. (2014) Perforant path synaptic loss correlates with cognitive impairment and Alzheimer's disease in the oldest-old. Brain 137:2578-87
Blurton-Jones, Mathew; Spencer, Brian; Michael, Sara et al. (2014) Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models. Stem Cell Res Ther 5:46
Berchtold, Nicole C; Sabbagh, Marwan N; Beach, Thomas G et al. (2014) Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer's disease. Neurobiol Aging 35:1961-72
Iulita, M Florencia; Do Carmo, Sonia; Ower, Alison K et al. (2014) Nerve growth factor metabolic dysfunction in Down's syndrome brains. Brain 137:860-72
Holler, Christopher J; Davis, Paulina R; Beckett, Tina L et al. (2014) Bridging integrator 1 (BIN1) protein expression increases in the Alzheimer's disease brain and correlates with neurofibrillary tangle pathology. J Alzheimers Dis 42:1221-7
Pensalfini, Anna; Albay 3rd, Ricardo; Rasool, Suhail et al. (2014) Intracellular amyloid and the neuronal origin of Alzheimer neuritic plaques. Neurobiol Dis 71:53-61
Sosa, Lucas J; Postma, Nienke L; Estrada-Bernal, Adriana et al. (2014) Dosage of amyloid precursor protein affects axonal contact guidance in Down syndrome. FASEB J 28:195-205
Perluigi, Marzia; Pupo, Gilda; Tramutola, Antonella et al. (2014) Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome brain. Biochim Biophys Acta 1842:1144-53
Di Domenico, Fabio; Pupo, Gilda; Tramutola, Antonella et al. (2014) Redox proteomics analysis of HNE-modified proteins in Down syndrome brain: clues for understanding the development of Alzheimer disease. Free Radic Biol Med 71:270-80

Showing the most recent 10 out of 227 publications