Late-onset Alzheimer's disease (LOAD) has a substantial genetic component estimated to be as high as 80%, much of which remains unexplained. Genome-wide association studies (GWAS) are emerging as a powerful approach in deciphering the genetic risk factors for common-complex diseases. We recently genotyped 318,237 single-nucleotide polymorphisms (SNPs) in 2,465 subjects from LOAD case-control series. Of these subjects, there are 200 pathologically confirmed ADs and 197 non-ADs with cerebellar RNA samples. We measured cerebellar mRNA levels of 12 AD candidate genes in these 200 autopsy-confirmed AD subjects. We extracted the c/s-SNP genotypes for these 12 candidate genes from the GWAS and performed associations utilizing their expression levels as endophenotypes. We identified 3 SNPs that associate significantly with IDE (insulin degrading enzyme) expression levels after correcting for multiple testing. One SNP had IDE expression level association at p=2.73 x 10"8, which would be significant even at the genome-wide level. Minor allele carriers of all 3 SNPs had IDE expression levels 2.43-2.66 fold higher than the major homozygotes. Minor allele carriers of all 3 /DESNPs had protective odds ratio estimates, as expected biologically from their effects on IDE expression levels. These SNPs were in linkage disequilibrium with IDE SNPs residing in regions conserved between human and mouse. These results suggest the existence of functional IDE variants that modify risk of AD via effects on gene expression. Importantly, they provide strong proof of principle that use of expression levels as endophenotypes may be a powerful approach in the identification of disease susceptibility alleles in GWAS. Our 200 AD cases and 197 non-AD subjects with whole genome SNP genotypes and brain RNA provide a highly valuable resource to pursue whole genome expression analysis. Assessment of whole-genome SNP associations with expression levels will generate a valuable resource for mapping complex diseases. Our data will enable simultaneous assessment of whole-genome variation for their effects on gene expression and the AD phenotype. SNPs that associate with both AD and expression levels will be candidate susceptibility variants for AD with plausible regulatory effects. In this proposal our specific aims are: 1. To obtain whole transcriptome expression levels from subjects with whole genome SNP genotypes. 2. To perform GWAS of whole transcriptome expression levels. 3. To identify and validate variants that associate with both AD risk and gene expression levels. 4. To validate the /DESNP-expression and AD associations.

Public Health Relevance

Alzheimer's disease (AD) is an epidemic that accounts for 60% of all dementias and affects an estimate of 13.5 million individuals worldwide. Understanding the underlying genetics of this common disease will help understand its formation, may provide advancement for its prevention as well as potential drug targets for its cure. Our proposed work is aimed at the discovery of AD susceptibility variants that work through regulation of gene expression using a genome-wide association study design.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
Kertesz, A; Finger, E; Murrell, J et al. (2015) Progressive supranuclear palsy in a family with TDP-43 pathology. Neurocase 21:178-84
Zhang, Bing; Ferman, Tanis J; Boeve, Bradley F et al. (2015) MRS in mild cognitive impairment: early differentiation of dementia with Lewy bodies and Alzheimer's disease. J Neuroimaging 25:269-74
Nedelska, Zuzana; Ferman, Tanis J; Boeve, Bradley F et al. (2015) Pattern of brain atrophy rates in autopsy-confirmed dementia with Lewy bodies. Neurobiol Aging 36:452-61
Shinohara, Mitsuru; Fujioka, Shinsuke; Murray, Melissa E et al. (2014) Regional distribution of synaptic markers and APP correlate with distinct clinicopathological features in sporadic and familial Alzheimer's disease. Brain 137:1533-49
Steffen, Teresa M; Boeve, Bradley F; Petersen, Cheryl M et al. (2014) Long-term exercise training for an individual with mixed corticobasal degeneration and progressive supranuclear palsy features: 10-year case report follow-up. Phys Ther 94:289-96
Cannon, Ashley; Bieniek, Kevin F; Lin, Wen-Lang et al. (2014) Concurrent variably protease-sensitive prionopathy and amyotrophic lateral sclerosis. Acta Neuropathol 128:313-5
van Blitterswijk, Marka; Mullen, Bianca; Wojtas, Aleksandra et al. (2014) Genetic modifiers in carriers of repeat expansions in the C9ORF72 gene. Mol Neurodegener 9:38
Graff-Radford, Jonathan; Murray, Melissa E; Lowe, Val J et al. (2014) Dementia with Lewy bodies: basis of cingulate island sign. Neurology 83:801-9
Mielke, Michelle M; Weigand, Stephen D; Wiste, Heather J et al. (2014) Independent comparison of CogState computerized testing and a standard cognitive battery with neuroimaging. Alzheimers Dement 10:779-89
Pedraza, Otto; Allen, Mariet; Jennette, Kyle et al. (2014) Evaluation of memory endophenotypes for association with CLU, CR1, and PICALM variants in black and white subjects. Alzheimers Dement 10:205-13

Showing the most recent 10 out of 556 publications