The ?4 allele of the apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alzheimer's disease (AD), which is pathologically defined by the presence of amyloid- (A)-containing plaques and hyperphosphorylated tau-containing neurofibrillary tangles. APOE4 is also a major genetic risk factor for cerebral amyloid angiopathy (CAA), a common pathological feature of AD with amyloid deposits along the cerebrovasculature. Our long-term goal is to understand how APOE4 differs from APOE3 and APOE2 in regulating A metabolism and the formation of amyloid plaques and CAA, thereby increasing risk for AD and CAA. As apoE is expressed abundantly both in brain parenchyma by astrocytes and in the cerebrovasculature by vascular mural cells, which include smooth muscle cells and pericytes, it is critical to examine how apoE isoforms expressed in different domains of the brain regulate apoE-related biology and pathobiology. As such, we have generated inducible and cell-type specific mouse models that express human apoE3 or apoE4 with the major goal being to test the specific roles of apoE isoforms produced by astrocytes or vascular mural cells in BBB permeability, brain A clearance and the formation of amyloid plaques and CAA. We hypothesize that human apoE4 expressed both in astrocytes and vascular mural cells contributes to compromised BBB integrity, impaired brain A clearance and the formation of amyloid plaques and CAA. We propose three complementary aims to test our hypothesis.
In Aim 1, we plan to compare how apoE isoforms produced by astrocytes or vascular mural cells differ in their biochemical properties and functions in regulating receptor binding, lipid transport, BBB integrity and A cellular uptake.
In Aim 2, we plan to examine how expression of apoE3 or apoE4 in astrocytes or vascular mural cells affects BBB integrity, brain A clearance, amyloid plaque deposition, and the formation of CAA in vivo using our recently developed mouse models that allow for inducible and cell-type specific expression of human apoE3 or apoE4. Finally in Aim 3, we will analyze how apoE isoforms and their expression levels influence the severity and topographical distribution of CAA in humans using a large collection of autopsy brains available through the Mayo Clinic ADRC Neuropathology Core. Together, our studies using cellular and animal models, as well as human autopsy brain tissue, will allow us to elucidate how apoE isoforms expressed in brain parenchyma and in cerebrovasculature regulate brain A clearance and the formation of amyloid plaques and CAA. These studies also have the potential to generate novel insights into how we can design therapeutic strategies for AD and CAA by targeting apoE.

Public Health Relevance

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease affecting a growingpopulation of elderly individuals. With the recent failures of clinical trials targeting amyloid- (A ) peptide; thereis an urgent need to define alternative targets for AD therapy. The apolipoprotein E (APOE) 4 allele is a stronggenetic risk factor for both AD and a related vascular pathology termed cerebral amyloid angiopathy (CAA).The major goal of our proposal is to test in animal models and in humans how the presence of apoE isoformsin different domains of the brain affects biochemical and pathological features of AD and CAA. Our studiesshould generate critical information for establishing apoE as a novel target for AD therapy.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
2P50AG016574-16
Application #
8676253
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4 (J1))
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
16
Fiscal Year
2014
Total Cost
$200,320
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Tosto, Giuseppe; Bird, Thomas D; Bennett, David A et al. (2016) The Role of Cardiovascular Risk Factors and Stroke in Familial Alzheimer Disease. JAMA Neurol 73:1231-1237
Karch, Celeste M; Ezerskiy, Lubov A; Bertelsen, Sarah et al. (2016) Alzheimer's Disease Risk Polymorphisms Regulate Gene Expression in the ZCWPW1 and the CELF1 Loci. PLoS One 11:e0148717
Ma, Li; Allen, Mariet; Sakae, Nobutaka et al. (2016) Expression and processing analyses of wild type and p.R47H TREM2 variant in Alzheimer's disease brains. Mol Neurodegener 11:72
Kantarci, Kejal; Lowe, Val J; Lesnick, Timothy G et al. (2016) Early Postmenopausal Transdermal 17β-Estradiol Therapy and Amyloid-β Deposition. J Alzheimers Dis 53:547-56
Zheng, Honghua; Liu, Chia-Chen; Atagi, Yuka et al. (2016) Opposing roles of the triggering receptor expressed on myeloid cells 2 and triggering receptor expressed on myeloid cells-like transcript 2 in microglia activation. Neurobiol Aging 42:132-41
Staubo, Sara C; Aakre, Jeremiah A; Vemuri, Prashanthi et al. (2016) Mediterranean diet, micronutrients and macronutrients, and MRI measures of cortical thickness. Alzheimers Dement :
Labbé, Catherine; Heckman, Michael G; Lorenzo-Betancor, Oswaldo et al. (2016) MAPT haplotype diversity in multiple system atrophy. Parkinsonism Relat Disord 30:40-5
McCutcheon, Sarah T; Han, Dingfen; Troncoso, Juan et al. (2016) Clinicopathological correlates of depression in early Alzheimer's disease in the NACC. Int J Geriatr Psychiatry 31:1301-1311
Forrester, Sarah N; Gallo, Joseph J; Smith, Gwenn S et al. (2016) Patterns of Neuropsychiatric Symptoms in Mild Cognitive Impairment and Risk of Dementia. Am J Geriatr Psychiatry 24:117-25
Day, Gregory S; Musiek, Erik S; Roe, Catherine M et al. (2016) Phenotypic Similarities Between Late-Onset Autosomal Dominant and Sporadic Alzheimer Disease: A Single-Family Case-Control Study. JAMA Neurol 73:1125-32

Showing the most recent 10 out of 813 publications