The ?4 allele of the apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alzheimer's disease (AD), which is pathologically defined by the presence of amyloid-? (A?)-containing plaques and hyperphosphorylated tau-containing neurofibrillary tangles. APOE4 is also a major genetic risk factor for cerebral amyloid angiopathy (CAA), a common pathological feature of AD with amyloid deposits along the cerebrovasculature. Our long-term goal is to understand how APOE4 differs from APOE3 and APOE2 in regulating A? metabolism and the formation of amyloid plaques and CAA, thereby increasing risk for AD and CAA. As apoE is expressed abundantly both in brain parenchyma by astrocytes and in the cerebrovasculature by vascular mural cells, which include smooth muscle cells and pericytes, it is critical to examine how apoE isoforms expressed in different domains of the brain regulate apoE-related biology and pathobiology. As such, we have generated inducible and cell-type specific mouse models that express human apoE3 or apoE4 with the major goal being to test the specific roles of apoE isoforms produced by astrocytes or vascular mural cells in BBB permeability, brain A? clearance and the formation of amyloid plaques and CAA. We hypothesize that human apoE4 expressed both in astrocytes and vascular mural cells contributes to compromised BBB integrity, impaired brain A? clearance and the formation of amyloid plaques and CAA. We propose three complementary aims to test our hypothesis.
In Aim 1, we plan to compare how apoE isoforms produced by astrocytes or vascular mural cells differ in their biochemical properties and functions in regulating receptor binding, lipid transport, BBB integrity and A? cellular uptake.
In Aim 2, we plan to examine how expression of apoE3 or apoE4 in astrocytes or vascular mural cells affects BBB integrity, brain A? clearance, amyloid plaque deposition, and the formation of CAA in vivo using our recently developed mouse models that allow for inducible and cell-type specific expression of human apoE3 or apoE4. Finally in Aim 3, we will analyze how apoE isoforms and their expression levels influence the severity and topographical distribution of CAA in humans using a large collection of autopsy brains available through the Mayo Clinic ADRC Neuropathology Core. Together, our studies using cellular and animal models, as well as human autopsy brain tissue, will allow us to elucidate how apoE isoforms expressed in brain parenchyma and in cerebrovasculature regulate brain A? clearance and the formation of amyloid plaques and CAA. These studies also have the potential to generate novel insights into how we can design therapeutic strategies for AD and CAA by targeting apoE.

Public Health Relevance

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease affecting a growing population of elderly individuals. With the recent failures of clinical trials targeting amyloid-? (A?) peptide, there is an urgent need to define alternative targets for AD therapy. The apolipoprotein E (APOE) ?4 allele is a strong genetic risk factor for both AD and a related vascular pathology termed cerebral amyloid angiopathy (CAA). The major goal of our proposal is to test in animal models and in humans how the presence of apoE isoforms in different domains of the brain affects biochemical and pathological features of AD and CAA. Our studies should generate critical information for establishing apoE as a novel target for AD therapy.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG016574-19
Application #
9259908
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2017-05-01
Budget End
2018-04-30
Support Year
19
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Zhou, Zilu; Wang, Weixin; Wang, Li-San et al. (2018) Integrative DNA copy number detection and genotyping from sequencing and array-based platforms. Bioinformatics 34:2349-2355
Schaffert, Jeff; LoBue, Christian; White, Charles L et al. (2018) Traumatic brain injury history is associated with an earlier age of dementia onset in autopsy-confirmed Alzheimer's disease. Neuropsychology 32:410-416
Besser, Lilah; Kukull, Walter; Knopman, David S et al. (2018) Version 3 of the National Alzheimer's Coordinating Center's Uniform Data Set. Alzheimer Dis Assoc Disord 32:351-358
Lowe, Val J; Lundt, Emily S; Senjem, Matthew L et al. (2018) White Matter Reference Region in PET Studies of 11C-Pittsburgh Compound B Uptake: Effects of Age and Amyloid-? Deposition. J Nucl Med 59:1583-1589
Vemuri, Prashanthi; Lesnick, Timothy G; Przybelski, Scott A et al. (2018) Development of a cerebrovascular magnetic resonance imaging biomarker for cognitive aging. Ann Neurol 84:705-716
Eftekharzadeh, Bahareh; Daigle, J Gavin; Kapinos, Larisa E et al. (2018) Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer's Disease. Neuron 99:925-940.e7
Vassilaki, Maria; Aakre, Jeremiah A; Syrjanen, Jeremy A et al. (2018) Mediterranean Diet, Its Components, and Amyloid Imaging Biomarkers. J Alzheimers Dis 64:281-290
Zhao, Na; Liu, Chia-Chen; Van Ingelgom, Alexandra J et al. (2018) APOE ?2 is associated with increased tau pathology in primary tauopathy. Nat Commun 9:4388
Crum, Jana; Wilson, Jeffrey; Sabbagh, Marwan (2018) Does taking statins affect the pathological burden in autopsy-confirmed Alzheimer's dementia? Alzheimers Res Ther 10:104
Zhan, Yiqiang; Clements, Mark S; Roberts, Rosebud O et al. (2018) Association of telomere length with general cognitive trajectories: a meta-analysis of four prospective cohort studies. Neurobiol Aging 69:111-116

Showing the most recent 10 out of 1014 publications