The Neuropathology (NP) Core performs diagnostic evaluations and quantitative analyses on brain tissue collected at autopsy of participants in the Mayo Alzheimer Disease Research Center (ADRC). The NP Core provides support to research projects of the ADRC and to other center affiliated investigators. The neuropathologic and genetic data generated by the NP Core is communicated to the Biostatistics and Data Management Core and to the National Alzheimer Coordinating Center. The approach for the NP Core is to: 1. Perform brain autopsies on participants of the Mayo ADRC in a timely fashion and according to protocol. 2. Provide neuropathologic evaluations and collect neuropathologic data using standardized methods for gross dissection and neurohistology. a. Cooperate with Mayo Clinic research neuroradiology in acquisition of post-mortem MRI scans of brains. b. Dissect brains according to a standardized protocol and photograph all sections. Score the severity of cerebrovascular pathology, and measure and sample macroscopic cerebrovascular lesions. c. Use histological methods, including silver stains, thioflavin S fluorescent microscopy and immunohistochemistry for tau and A?, to collect standardized pathologic data on all cases. d. Perform immunostaining with antibodies to ?-synuclein on all cases. In cases with Lewy bodies, assign a diagnosis according to the criteria of the Consortium for Dementia with Lewy Bodies. e. Perform immunostaining with antibodies to TDP-43 on all cases and when positive on the screening section, subtype and map the distribution of TDP-43 pathology. f. Arrive at a consensus on clinicopathologic diagnoses at videoconferences held twice a month. g. Provide neuropathological data to the Biostatistics Core and NACC. 3. Store brain tissue and other autopsy-derived materials (e.g., DNA) and provide clinically and pathologically well-characterized tissue samples, DNA or data to ADRC research projects and pilot projects at Mayo Clinic as well as qualified outside investigators. 4. Assist ADRC research projects by providing neuropathologic expertise, tissue or histopathologic services. a. Assist in neuropathologic classification of cases included in the MRI studies of Project 1, which aims to develop an image based diagnostic software program that predicts the underlying pathology. b. Provide autopsy tissue samples of brains of subjects with a range of neurofibrillary pathology in AD and other tauopathies to Project 2 and assist in tissue processing and histologic studies of mouse models. c. Provide brain tissue samples to Project 3 as well as data on cerebral amyloid angiopathy (CAA) with respect to type, distribution, and severity; as well as data on burden of cerebrovascular pathology. 5. Provide genetic screening for ADRC sample sets with respect to existing and newly discovered genes.

Public Health Relevance

- NEUROPATHOLOGY CORE The Neuropathology Core provides a final diagnosis (the 'gold standard') for the patients enrolled in the study who come to autopsy and it is a repository of data and tissue from human and animal models for research purposes. In addition to contribution to diagnosis and research on Alzheimer's disease, the neuropathology core assists in educational activities of the Alzheimer's Disease Research Center.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG016574-20
Application #
9475173
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2018-05-01
Budget End
2019-04-30
Support Year
20
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Vassilaki, Maria; Aakre, Jeremiah A; Syrjanen, Jeremy A et al. (2018) Mediterranean Diet, Its Components, and Amyloid Imaging Biomarkers. J Alzheimers Dis 64:281-290
Zhao, Na; Liu, Chia-Chen; Van Ingelgom, Alexandra J et al. (2018) APOE ?2 is associated with increased tau pathology in primary tauopathy. Nat Commun 9:4388
Crum, Jana; Wilson, Jeffrey; Sabbagh, Marwan (2018) Does taking statins affect the pathological burden in autopsy-confirmed Alzheimer's dementia? Alzheimers Res Ther 10:104
Mordes, Daniel A; Prudencio, Mercedes; Goodman, Lindsey D et al. (2018) Dipeptide repeat proteins activate a heat shock response found in C9ORF72-ALS/FTLD patients. Acta Neuropathol Commun 6:55
Burke, Shanna L; Cadet, Tamara; Maddux, Marlaina (2018) Chronic Health Illnesses as Predictors of Mild Cognitive Impairment Among African American Older Adults. J Natl Med Assoc 110:314-325
Zhan, Yiqiang; Clements, Mark S; Roberts, Rosebud O et al. (2018) Association of telomere length with general cognitive trajectories: a meta-analysis of four prospective cohort studies. Neurobiol Aging 69:111-116
Lowe, Val J; Bruinsma, Tyler J; Min, Hoon-Ki et al. (2018) Elevated medial temporal lobe and pervasive brain tau-PET signal in normal participants. Alzheimers Dement (Amst) 10:210-216
Kamara, Dennis M; Gangishetti, Umesh; Gearing, Marla et al. (2018) Cerebral Amyloid Angiopathy: Similarity in African-Americans and Caucasians with Alzheimer's Disease. J Alzheimers Dis 62:1815-1826
Sassi, Celeste; Nalls, Michael A; Ridge, Perry G et al. (2018) Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. Neurobiol Aging 66:179.e17-179.e29
Davis, Jeremy J (2018) Performance validity in older adults: Observed versus predicted false positive rates in relation to number of tests administered. J Clin Exp Neuropsychol 40:1013-1021

Showing the most recent 10 out of 1014 publications