The Emory Alzheimer's Disease Research Center (ADRC) provides Georgia and the region with comprehensive clinical, research, and educational programs This renewal application outlines our success in building an environment that encourages and supports innovative projects directed at understanding the pathogenesis and developing new treatments for AD and other age-related cognitive disorders. We benefit from generous institutional support from Emory, one of the nation's fastest growing research academic enterprises, and collaborative interactions with the Emory Center for Neurodegenerative Disease, and the Yerkes National Primate Center. Our 5 cores demonstrate remarkable productivity in recruiting patients from the culturally diverse clinical specialty programs at Emory and Grady Memorial Hospitals for participation in our ADRC registry, the autopsy program, and the various clinical research activities. Data from these cores are captured and stored for distribution to local researchers and for national collaborations. Our biospecimen banks include well-characterized neuropathological case materials, and DNA, CSF, and blood samples from our clinical populations. These valuable resources are distributed widely for a variety of approved studies of genetic, molecular, pharmacological, and pathological investigations. The ADRC educational programs reach a broad audience of students, health care professionals, and the public. We propose three cutting edge research projects that are closely integrated with ADRC Cores: Project 1 (Dr. Ben Hampstead) """"""""Comparison of Memory Rehabilitation Techniques in Mild Cognitive Impairment"""""""", will use a novel approach to rehabilitation of memory combining behavioral components with functional brain imaging to address whether rehabilitation techniques target the intended brain regions and to determine the signature of brain activity associated with successful rehabilitation. Project 2, """"""""miRNA Expression Modulation of Alzheimer Disease Pathogenesis"""""""" (Dr. Peng Jin) will extend studies of miRNAs selectively altered in AD brain and evaluate their role in the post-transcriptional regulation of the expression of specific mRNAs that are involved in AD pathogenesis. Project 3, """"""""Norepinephrine-TrkB Interactions in Alzheimer's Disease"""""""" (Dr. David Weinshenker) studies a novel interaction between catecholamines and the TrkB receptor in animal and cell culture models of AD, as well as in brain tissues obtained from controls, MCI, and AD cases. Collectively, these projects span clinical, translational, and basic science research and will advance our understanding of cognition in normal aging and its transitions to mild cognitive impairment, AD, and related neurodegenerative disorders.

Public Health Relevance

Georgia has one of the fast growing elderly populations in the country, anticipating a major increase in AD and other age-related neurodegenerative conditions in the decades ahead. Advances in clinical care, research, and education are essential to successfully confront the challenge. Renewal of the Emory ADRC will sustain progress in better understanding disease pathogenesis, enable earlier identification of at-risk individuals, and catalyze development of more effective treatments.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
2P50AG025688-06
Application #
7837508
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4 (J2))
Program Officer
Phelps, Creighton H
Project Start
2005-06-01
Project End
2015-04-30
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
6
Fiscal Year
2010
Total Cost
$1,550,000
Indirect Cost
Name
Emory University
Department
Neurology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
He, Yingli; She, Hua; Zhang, Ting et al. (2018) p38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1. J Cell Biol 217:315-328
Alosco, Michael L; Sugarman, Michael A; Besser, Lilah M et al. (2018) A Clinicopathological Investigation of White Matter Hyperintensities and Alzheimer's Disease Neuropathology. J Alzheimers Dis 63:1347-1360
Hampstead, Benjamin M; Towler, Stephen; Stringer, Anthony Y et al. (2018) Continuous measurement of object location memory is sensitive to effects of age and mild cognitive impairment and related to medial temporal lobe volume. Alzheimers Dement (Amst) 10:76-85
Brent, Robert J (2018) Estimating the monetary benefits of medicare eligibility for reducing the symptoms of dementia. Appl Econ 50:6327-6340
Brenowitz, Willa D; Han, Fang; Kukull, Walter A et al. (2018) Treated hypothyroidism is associated with cerebrovascular disease but not Alzheimer's disease pathology in older adults. Neurobiol Aging 62:64-71
Kaur, Gurjinder; Gauthier, Sebastien A; Perez-Gonzalez, Rocio et al. (2018) Cystatin C prevents neuronal loss and behavioral deficits via the endosomal pathway in a mouse model of down syndrome. Neurobiol Dis 120:165-173
Walker, Lary C (2018) Sabotage by the brain's supporting cells helps fuel neurodegeneration. Nature 557:499-500
Deming, Yuetiva; Dumitrescu, Logan; Barnes, Lisa L et al. (2018) Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathol 136:857-872
Gallagher, Damien; Kiss, Alex; Lanctot, Krista L et al. (2018) Toward Prevention of Mild Cognitive Impairment in Older Adults With Depression: An Observational Study of Potentially Modifiable Risk Factors. J Clin Psychiatry 80:
Ping, Lingyan; Duong, Duc M; Yin, Luming et al. (2018) Global quantitative analysis of the human brain proteome in Alzheimer's and Parkinson's Disease. Sci Data 5:180036

Showing the most recent 10 out of 444 publications