Alzheimer's disease (AD) is the most common cause of cognitive impairment in older patients and is expected to increase greatly in prevalence. Neuropathologically, AD is characterized by beta-amyloid containing plaques, tau-containing neurofibrillary tangles, and neuronal loss. A well described yet underappreciated eariy feature of AD pathogenesis is the degeneration ofthe locus coeruleus (LC), which is the sole source of forebrain norepinephrine (NE). Previous studies have shown that LC lesions exacerbate AD-like neuropathology and cognitive deficits in mouse models of AD, while increasing NE is neuroprotective. However, the mechanism underiying the protective effect of LC neurons in AD is not understood. We have recently discovered that NE and other endogenous catecholamines function as direct agonists forthe TrkB neurotrophin receptor. TrkB signaling is neuroprotective, retards A(3 toxicity, and is critical for neuronal plasticity and learning and memory. The goal of this proposal is to test whether this novel NE-TrkB interaction contributes to the role ofthe LC in AD pathogenesis.
In Aim 1, we will test the ability of NE and novel synthetic catecholamine-derived TrkB agonists to decrease AB production and toxicity in primary neuronal cultures.
In Aim 2, we will test the ability of the most promising TrkB agonists identified in Aim 1 to ameliorate AD-like neuropathology and cognitive deficits in a transgenic mouse model of AD.
In Aim 3, we will test the hypothesis that LC loss in mild cognitive impairment (MCI) and AD impairs TrkB activation and correlates with amyloid pathology and cognitive impairment using human postmortem cases.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emory University
United States
Zip Code
Matveev, Sergey V; Spielmann, Hans Peter; Metts, Brittney M et al. (2014) A distinct subfraction of A? is responsible for the high-affinity Pittsburgh compound B-binding site in Alzheimer's disease brain. J Neurochem 131:356-68
England, Heather B; Gillis, M Meredith; Hampstead, Benjamin M (2014) RBANS memory indices are related to medial temporal lobe volumetrics in healthy older adults and those with mild cognitive impairment. Arch Clin Neuropsychol 29:322-8
Chopra, Pankaj; Papale, Ligia A; White, Andrew T J et al. (2014) Array-based assay detects genome-wide 5-mC and 5-hmC in the brains of humans, non-human primates, and mice. BMC Genomics 15:131
Lohr, Kelly M; Bernstein, Alison I; Stout, Kristen A et al. (2014) Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo. Proc Natl Acad Sci U S A 111:9977-82
Goldstein, Felicia C; Ashley, Angela V; Miller, Eric et al. (2014) Validity of the montreal cognitive assessment as a screen for mild cognitive impairment and dementia in African Americans. J Geriatr Psychiatry Neurol 27:199-203
Kummer, Markus P; Hammerschmidt, Thea; Martinez, Ana et al. (2014) Ear2 deletion causes early memory and learning deficits in APP/PS1 mice. J Neurosci 34:8845-54
Göttle, Martin; Prudente, Cecilia N; Fu, Rong et al. (2014) Loss of dopamine phenotype among midbrain neurons in Lesch-Nyhan disease. Ann Neurol 76:95-107
Richardson, Jason R; Roy, Ananya; Shalat, Stuart L et al. (2014) Elevated serum pesticide levels and risk for Alzheimer disease. JAMA Neurol 71:284-90
Feldman, Eva L; Boulis, Nicholas M; Hur, Junguk et al. (2014) Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: phase 1 trial outcomes. Ann Neurol 75:363-73
Beecham, Gary W; Hamilton, Kara; Naj, Adam C et al. (2014) Genome-wide association meta-analysis of neuropathologic features of Alzheimer's disease and related dementias. PLoS Genet 10:e1004606

Showing the most recent 10 out of 141 publications