Aging is the single most important risk factor for Alzheimer's disease (AD), which represents the most common cause of dementia in the world. Our group has shown that a naturally occurring switch from the TrkA to the p75 neurotrophin receptor system is responsible for the activation of amyloid p-peptide (A[3) that characterizes aging. Such an event occurs downstream of the aging program mediated by the insulin-like growth factor 1 receptor (IGF1-R), and leads to activation of neutral sphingomyelinase (nSMase), the enzyme that generates the lipid second messenger ceramide. Ceramide, in turn, is responsible for the molecular stabilization of BACE1 and the increased production of Ap. The above events can be blocked by genetic and biochemical approaches that target IGF1-R, p75NTR, or nSMase. In the Preliminary Studies Section, we report that ceramide regulates a transient form of lysine acetylation of nascent BACE1 that affects the molecular stability of the p secretase. This process involves lysine acetylation in the lumen of the ER/ERGIC and is followed by deacetylation in the lumen of the Golgi apparatus, once the nascent protein is fully mature. Given the role that BACE1 plays in the molecular pathogenesis of AD, our results have profound implications for the neurobiology of the disease. The central hypothesis of this proposal is that ceramide is the last output of a signaling pathway that controls AD-neuropatholoqy during aging. Specifically, we propose that ceramide regulates AB generation by affecting the acetylation and molecular stability of BACE1, the rate-limiting enzyme for the biogenesis of Ap.
Specific Aim 1 will study the biochemical properties of the acetyl-CoA membrane transporter, which translocates acetylCoA from the cytosol to the lumen of the ER, where it serves as donor of acetyl groups for the molecular stabilization of BACE1.
Specific Aim 2 will study the function and biochemical properties of two newly-identified acetylCoA:lysine acetyltransferases that are required for the molecular stabilization of BACE1, downstream of ceramide. For the execution of the above two Specific Aims, we have described a combination of biochemical and genetic approaches. The biochemical approaches include enzymatic assays, in vitro reconstitution, affinity purification, subcellular fractionation studies, and depletion studies. The genetic approaches include stable transfection and """"""""gene-silencing"""""""" of the above targets. Finally, translational research is described as part of our proposal to translate our findings into novel therapeutic approaches to prevent late-onset AD.

Public Health Relevance

Aging is the single most important risk factor for Alzheimer's disease (AD). Because of the increase in life expectancy that we are experiencing, AD is predicted to affect 45 million individuals worldwide by the year 2050. We have identified a novel molecular pathway that links aging to AD neuropathology. The long-term objective of this proposal is to characterize this pathway and design new approaches for the prevention of AD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
3P50AG033514-04S1
Application #
8449653
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
2014-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
4
Fiscal Year
2012
Total Cost
$17,392
Indirect Cost
$5,680
Name
University of Wisconsin Madison
Department
Type
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Brenowitz, Willa D; Keene, C Dirk; Hawes, Stephen E et al. (2017) Alzheimer's disease neuropathologic change, Lewy body disease, and vascular brain injury in clinic- and community-based samples. Neurobiol Aging 53:83-92
Law, Lena L; Schultz, Stephanie A; Boots, Elizabeth A et al. (2017) Chronotropic Response and Cognitive Function in a Cohort at Risk for Alzheimer's Disease. J Alzheimers Dis 56:351-359
Moga, Daniela C; Abner, Erin L; Wu, Qishan et al. (2017) Bladder antimuscarinics and cognitive decline in elderly patients. Alzheimers Dement (N Y) 3:139-148
Katsumata, Yuriko; Nelson, Peter T; Ellingson, Sally R et al. (2017) Gene-based association study of genes linked to hippocampal sclerosis of aging neuropathology: GRN, TMEM106B, ABCC9, and KCNMB2. Neurobiol Aging 53:193.e17-193.e25
Dempsey, Robert J; Jackson, Daren C; Wilbrand, Stephanie M et al. (2017) The Preservation of Cognition 1 Yr After Carotid Endarterectomy in Patients With Prior Cognitive Decline. Neurosurgery :
Hullinger, Rikki; Puglielli, Luigi (2017) Molecular and cellular aspects of age-related cognitive decline and Alzheimer's disease. Behav Brain Res 322:191-205
Houlahan, Beth; Carlson, Elizabeth; Kind, Amy et al. (2017) Initiation of a Transitions Program: ""Two Million Melvins"". J Nurs Care Qual 32:99-103
Berman, Sara E; Clark, Lindsay R; Rivera-Rivera, Leonardo A et al. (2017) Intracranial Arterial 4D Flow in Individuals with Mild Cognitive Impairment is Associated with Cognitive Performance and Amyloid Positivity. J Alzheimers Dis 60:243-252
Betthauser, Tobey J; Lao, Patrick J; Murali, Dhanabalan et al. (2017) In Vivo Comparison of Tau Radioligands 18F-THK-5351 and 18F-THK-5317. J Nucl Med 58:996-1002
Hoy, Andrew R; Ly, Martina; Carlsson, Cynthia M et al. (2017) Microstructural white matter alterations in preclinical Alzheimer's disease detected using free water elimination diffusion tensor imaging. PLoS One 12:e0173982

Showing the most recent 10 out of 288 publications