Elevated joint contact stress from residual articular incongruity following intra-articular fracture (IAF) is a critically important risk factor for post-traumatic OA (PTOA) that until recently could not be assessed, presenting a major obstacle to meaningful research aimed at improving treatment. The goals of the proposed research are to employ a clinically applicable measure of contact stress, obtained using computational discrete element analysis (DEA) methods, to diagnose patients at risk of PTOA following IAF and to develop and test methods of preventing elevated contact stress from joint incongruity. In retrospective studies of different lower extremity joints, DEA will be utilized to identify thresholds of joint contact stress above which PTOA is most highly likely (Specific Aim 1). To advance understanding of how elevated cumulative contact stress after IAF affects joint structure and biology to cause PTOA, prospective studies will be undertaken to correlate contact stress levels with morphologic articular surface changes detected on MRI, with alterations in serum and urine biomarkers, with radiographic changes, and with patient pain and function (Aim 2). The other two aims of this study will make important clinical steps to prevent elevated contact stress following IAF and thereby improve patient outcomes. New intra-operative techniques will be developed to assess the contact stress exposure associated with a given candidate IAF reduction during operations, to inform surgeons in their decision-making. These novel techniques will be based on deduced fragment poses from fluoroscopic images correlated with pre-operative CT models;contact stress estimates will be calculated with DEA. These techniques will be assessed on simulated fracture models and piloted in the operating room during IAF surgery and compared with conventional treatment (Aim 3). In a pilot clinical feasibility study, acute joint distraction using a ring fixator for severe tibial pilon fractures will be assessed using DEA, MRI and biomarkers to determine if temporarily sparing damaged articular surfaces from harmful joint contact stress after injury improves joint healing in such high energy IAFs (Aim 4).

Public Health Relevance

Completion of these studies has the potential to change how IAFs are assessed and treated. Developing diagnostic tools to measure deleterious elevated contact stress that can be used in populations of patients will lead to better clinical research and improved patient care. In addition to forming the basis for improved treatments of IAF, information gained from these studies will advance understanding of the role of cumulative contact stress in all forms of OA.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Specialized Center (P50)
Project #
5P50AR055533-08
Application #
8725050
Study Section
Special Emphasis Panel (ZAR1-KM)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
8
Fiscal Year
2014
Total Cost
$234,887
Indirect Cost
$61,564
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Thomas-Aitken, Holly D; Willey, Michael C; Goetz, Jessica E (2018) Joint contact stresses calculated for acetabular dysplasia patients using discrete element analysis are significantly influenced by the applied gait pattern. J Biomech 79:45-53
Coleman, Mitchell C; Goetz, Jessica E; Brouillette, Marc J et al. (2018) Targeting mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis. Sci Transl Med 10:
Townsend, Kevin C; Thomas-Aitken, Holly D; Rudert, M James et al. (2018) Discrete element analysis is a valid method for computing joint contact stress in the hip before and after acetabular fracture. J Biomech 67:9-17
Seol, Dongrim; Tochigi, Yuki; Bogner, Ashley M et al. (2018) Effects of knockout of the receptor for advanced glycation end-products on bone mineral density and synovitis in mice with intra-articular fractures. J Orthop Res 36:2439-2449
Ding, Lei; Buckwalter, Joseph A; Martin, James A (2017) DAMPs Synergize with Cytokines or Fibronectin Fragment on Inducing Chondrolysis but Lose Effect When Acting Alone. Mediators Inflamm 2017:2642549
Segal, Neil A; Frick, Eric; Duryea, Jeffrey et al. (2017) Comparison of tibiofemoral joint space width measurements from standing CT and fixed flexion radiography. J Orthop Res 35:1388-1395
Segal, Neil A; Bergin, John; Kern, Andrew et al. (2017) Test-retest reliability of tibiofemoral joint space width measurements made using a low-dose standing CT scanner. Skeletal Radiol 46:217-222
Dibbern, Kevin; Kempton, Laurence B; Higgins, Thomas F et al. (2017) Fractures of the tibial plateau involve similar energies as the tibial pilon but greater articular surface involvement. J Orthop Res 35:618-624
Kapitanov, Georgi I; Ayati, Bruce P; Martin, James A (2017) Modeling the effect of blunt impact on mitochondrial function in cartilage: implications for development of osteoarthritis. PeerJ 5:e3468
Martin, James A; Anderson, Donald D; Goetz, Jessica E et al. (2017) Complementary models reveal cellular responses to contact stresses that contribute to post-traumatic osteoarthritis. J Orthop Res 35:515-523

Showing the most recent 10 out of 99 publications