Based on the NIAMS-sponsored OAI this study will provide unique information on the role of the MR based T2 relaxation time cartilage biomarker in predicting and monitoring knee osteoarthritis in individuals with risk factors for OA and early OA in relation to healthy controls.
The specific aims are: (1) To study the prevalence and grade of cartilage and meniscal lesions using the semi-quantitative whole organ magnetic resonance imaging score (WORMS) in normal individuals (n=100), individuals from the incidence (risk factors) (n=300) and progression (early OA) (n=300) cohorts of the OAI aged 45-70 years, and to analyze the relationship of these scores with T2 parameters (mean, spatial distribution and laminar organization) and assess interrelationships between the 3 groups. (2) To determine if baseline T2 parameters (mean, spatial distribution and laminar organization) will predict longitudinal change in WORMS scores and increase in WOMAC (Western Ontario and McMasters) and KOOS (Knee Injury and Osteoarthritis Outcome Score) indices over a period of 2 and 4 years. (3) To assess the longitudinal change in (i) T2 parameters (mean, spatial distribution and laminar organization) and (ii) cartilage and meniscal lesion progression in relation to changes of pain and function scales (WOMAC, KOOS), physical activity (PASE) and physical performance over a period of 2 and 4 years. MR imaging studies will be analyzed semi-quantitatively (WORMS) and quantitatively (T2 relaxation time) at baseline, after 2 and 4 years. Clinical information will be available in all these individuals (WOMAC scores, KOOS, PASE) as well as knee function tests (e.g. 400-meter walk, flexion, extension strength through isometric strength testing). We strongly believe, that the advances in knowledge that we gain through this study will help us better understand the role of T2 values in relation to evolution and pathophysiology of OA. Comparing our findings in the incidence and normal cohorts, it may provide evidence how risk factors impact knee joint health. This study may also provide evidence on how to prevent development of early OA and reduce the devastating economic cost induced by disability and pain associated with OA.

Public Health Relevance

Osteoarthritis (OA) is the second most common cause of permanent disability among subjects over the age of fifty. Given limited treatment options preventive efforts are of central importance to preserve knee joint health. This, however, requires sensitive biomarkers to predict the risk of OA and monitor its progression. The overall impact of this project will be to thoroughly investigate the role of the T2 biomarker in normal individuals, those with OA and risk factors for OA in the evolution and progression of the disease.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-KM (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
San Francisco
United States
Zip Code
Joseph, Gabby B; McCulloch, Charles E; Nevitt, Michael C et al. (2017) Tool for osteoarthritis risk prediction (TOARP) over 8 years using baseline clinical data, X-ray, and MRI: Data from the osteoarthritis initiative. J Magn Reson Imaging :
Samaan, Michael A; Schwaiger, Benedikt J; Gallo, Matthew C et al. (2017) Joint Loading in the Sagittal Plane During Gait Is Associated With Hip Joint Abnormalities in Patients With Femoroacetabular Impingement. Am J Sports Med 45:810-818
Pedoia, Valentina; Samaan, Michael A; Inamdar, Gaurav et al. (2017) Study of the interactions between proximal femur 3d bone shape, cartilage health, and biomechanics in patients with hip Osteoarthritis. J Orthop Res :
Samaan, Michael A; Pedoia, Valentina; Zhang, Alan L et al. (2017) A novel mr-based method for detection of cartilage delamination in femoroacetabular impingement patients. J Orthop Res :
Samaan, Michael A; Schwaiger, Benedikt J; Gallo, Matthew C et al. (2017) Abnormal Joint Moment Distributions and Functional Performance During Sit-to-Stand in Femoroacetabular Impingement Patients. PM R 9:563-570
Jenkins, N W; Talbott, J F; Shah, V et al. (2017) [18F]-Sodium Fluoride PET MR-Based Localization and Quantification of Bone Turnover as a Biomarker for Facet Joint-Induced Disability. AJNR Am J Neuroradiol 38:2028-2031
Pedoia, Valentina; Su, Favian; Amano, Keiko et al. (2017) Analysis of the articular cartilage T1? and T2 relaxation times changes after ACL reconstruction in injured and contralateral knees and relationships with bone shape. J Orthop Res 35:707-717
Russell, Colin; Pedoia, Valentina; Majumdar, Sharmila et al. (2017) Composite metric R2 ?-?R1? (1/T2 ?-?1/T1? ) as a potential MR imaging biomarker associated with changes in pain after ACL reconstruction: A six-month follow-up. J Orthop Res 35:718-729
Joseph, Gabby B; McCulloch, Charles E; Nevitt, Michael C et al. (2017) Medial femur T2 Z-scores predict the probability of knee structural worsening over 4-8 years: Data from the osteoarthritis initiative. J Magn Reson Imaging 46:1128-1136
Pedoia, Valentina; Gallo, Matthew C; Souza, Richard B et al. (2017) Longitudinal study using voxel-based relaxometry: Association between cartilage T1? and T2 and patient reported outcome changes in hip osteoarthritis. J Magn Reson Imaging 45:1523-1533

Showing the most recent 10 out of 128 publications