The overall objective of this proposal entitled """""""" Translation of Quantitative Imaging in Osteoarthritis"""""""" (TOQIO) is to integrate cutting edge quantitative imaging technologies, link the image derived metrics to joint kinematics, kinetics, patient function, and translate the linkages found to the musculoskeletal clinic, thus affecting patient management and outcome. In order to accomplish these objectives we have a combined team that includes orthopedic surgeons, rheumatologists, imaging scientists, bioengineers, physical therapists, epidemiologists, and biologists. This team is built upon the strong foundation of interdisciplinary collaborations between the investigators, with a focus on translational research, and is supported by numerous individual investigator and programmatic grants that have established these collaborative research partnerships between the investigators and the institutions. The major goals of TOQIO are to (i) provide the infra-structure and develop an inter-disciplinary team to translate promising new imaging methodologies and non-invasive biomarkers from proof of principle to studies/trials in human subjects, and ultimately into widely available clinical tools that directly impact patient care and management of osteoarthritis;(ii) to develop models and relationships between the quantitative imaging measures and biomechanics that are relevant to function, not only for monitoring and diagnosing osteoarthritis, but also for assessing pharmaceutical or surgical therapies and subject selection in clinical trials;and (iii) to develop an educational program in which imaging specialists that develop the novel techniques relevant to osteoarthritis research teach basic and clinical scientists how to use such approaches in enhancing their research and translate the imaging information to the diagnosis and clinical management of osteoarthritis, as well as develop new pilot and feasibility projects utilizing the themes central to TOQIO. TOQIO consists of an administrative core, four research projects, and two research and scientific cores: Imaging and Data Analysis and Human performance and Functional Testing. In addition, there will be participants from UCSF and UC Davis and an excellent External Advisory Committee that includes lay input from a community member.

Public Health Relevance

Osteoarthritis (OA) is the second most common cause of permanent disability among subjects over the age of fifty. This proposal will develop methods of imaging that can be used for more effective diagnosis and monitoring of OA.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Specialized Center (P50)
Project #
5P50AR060752-03
Application #
8535524
Study Section
Special Emphasis Panel (ZAR1-KM (M1))
Program Officer
Lester, Gayle E
Project Start
2011-08-01
Project End
2016-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
3
Fiscal Year
2013
Total Cost
$1,175,576
Indirect Cost
$185,089
Name
University of California San Francisco
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Wang, Amy; Pedoia, Valentina; Su, Favian et al. (2016) MR T1ρ and T2 of meniscus after acute anterior cruciate ligament injuries. Osteoarthritis Cartilage 24:631-9
Nelson, Amanda E; Golightly, Yvonne M; Renner, Jordan B et al. (2016) Variations in Hip Shape Are Associated with Radiographic Knee Osteoarthritis: Cross-sectional and Longitudinal Analyses of the Johnston County Osteoarthritis Project. J Rheumatol 43:405-10
Pandit, Prachi; Talbott, Jason F; Pedoia, Valentina et al. (2016) T1ρ and T2 -based characterization of regional variations in intervertebral discs to detect early degenerative changes. J Orthop Res 34:1373-81
Joshi, Anand A; Leahy, Richard M; Badawi, Ramsey D et al. (2016) Registration-Based Morphometry for Shape Analysis of the Bones of the Human Wrist. IEEE Trans Med Imaging 35:416-26
Schwaiger, Benedikt J; Gersing, Alexandra S; Mbapte Wamba, John et al. (2016) Can Signal Abnormalities Detected with MR Imaging in Knee Articular Cartilage Be Used to Predict Development of Morphologic Cartilage Defects? 48-Month Data from the Osteoarthritis Initiative. Radiology 281:158-67
Kretzschmar, M; Heilmeier, U; Yu, A et al. (2016) Longitudinal analysis of cartilage T2 relaxation times and joint degeneration in African American and Caucasian American women over an observation period of 6 years - data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 24:1384-91
Russell, Colin; Pedoia, Valentina; Amano, Keiko et al. (2016) Baseline cartilage quality is associated with voxel-based T1ρ and T2 following ACL reconstruction: A multicenter pilot study. J Orthop Res :
Pedoia, Valentina; Su, Favian; Amano, Keiko et al. (2016) Analysis of the articular cartilage T1ρ and T2 relaxation times changes after ACL reconstruction in injured and contralateral knees and relationships with bone shape. J Orthop Res :
Lau, Brian C; Thuillier, Daniel U; Pedoia, Valentina et al. (2016) Inter- and intra-rater reliability of patellofemoral kinematic and contact area quantification by fast spin echo MRI and correlation with cartilage health by quantitative T1ρ MRI. Knee 23:13-9
An, H; Marron, J S; Schwartz, T A et al. (2016) Novel statistical methodology reveals that hip shape is associated with incident radiographic hip osteoarthritis among African American women. Osteoarthritis Cartilage 24:640-6

Showing the most recent 10 out of 118 publications