The Human Performance and Functional Testing Core is designed as both a service core and a development core. It will provide accurate and reliable research acquisition and processing services, specifically for projects #1 and #2 of the TOQIO CORT, as well as for other research teams at UCSF. It is also committed to the development of innovative monitoring of physical activity in persons with OA to evaluate the contribution of loading behaviors to cartilage health and disease. The Core will also serve as a valuable resource for multi-disciplinary pilot projects that emerge as part of the CORT mechanism. The overall objective of the Human Performance and Functional Testing Core is to provide comprehensive state-of- the-art three-dimensional motion analysis and functional testing facilities for experimental research projects and to develop new methods with improved technical capabilities. The Core is equipped with high-resolution motion analysis capabilities, including a 10-camera VICON optical motion capture system with capture frequency capabilities up to 1000 HZ and a cluster-based retro reflective marker set, 2 AMTI force platforms, and 2 high-resolution high-speed digital video cameras. The Core personnel are experts in the fields of motion analysis, sports medicine, and functional testing. The core will provide for accurate and reliable motion analysis acquisition and processing, as well as provide training and facilities for physical performance and functional testing procedures. Finally, the Core will provide resources for biosensor development for osteoarthritis (OA) research and personnel with extensive expertise in wireless sensor development and fabrication. The Core is ideally positioned with close access for all researchers and patients using this resource. The Core will be housed in the Human Performance Center on the Mission Bay Campus. This facility is a 900 square-foot laboratory located in the newly built Orthopaedic Institute at UCSF. Clinical recruitment will primarily be performed through orthopaedic clinics, which take place on the second floor of the Orthopaedic Institute., All Principle Investigators utilizing this Core have offices nearby, on or around the Mission Bay campus. Imaging facilities are also located in very close proximity to the Core, minimizing subject inconvenience, and facilitating ease of referral and data acquisition.

Public Health Relevance

OA is the second most common cause of permanent disability among subjects over the age of fifty. This proposal will evaluate the relationships between cartilage biochemical properties and functional mobility, including kinematics, kinetics and measures of physical performance.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-KM)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
San Francisco
United States
Zip Code
Joseph, Gabby B; McCulloch, Charles E; Nevitt, Michael C et al. (2017) Tool for osteoarthritis risk prediction (TOARP) over 8 years using baseline clinical data, X-ray, and MRI: Data from the osteoarthritis initiative. J Magn Reson Imaging :
Samaan, Michael A; Schwaiger, Benedikt J; Gallo, Matthew C et al. (2017) Joint Loading in the Sagittal Plane During Gait Is Associated With Hip Joint Abnormalities in Patients With Femoroacetabular Impingement. Am J Sports Med 45:810-818
Pedoia, Valentina; Samaan, Michael A; Inamdar, Gaurav et al. (2017) Study of the interactions between proximal femur 3d bone shape, cartilage health, and biomechanics in patients with hip Osteoarthritis. J Orthop Res :
Samaan, Michael A; Pedoia, Valentina; Zhang, Alan L et al. (2017) A novel mr-based method for detection of cartilage delamination in femoroacetabular impingement patients. J Orthop Res :
Samaan, Michael A; Schwaiger, Benedikt J; Gallo, Matthew C et al. (2017) Abnormal Joint Moment Distributions and Functional Performance During Sit-to-Stand in Femoroacetabular Impingement Patients. PM R 9:563-570
Jenkins, N W; Talbott, J F; Shah, V et al. (2017) [18F]-Sodium Fluoride PET MR-Based Localization and Quantification of Bone Turnover as a Biomarker for Facet Joint-Induced Disability. AJNR Am J Neuroradiol 38:2028-2031
Pedoia, Valentina; Su, Favian; Amano, Keiko et al. (2017) Analysis of the articular cartilage T1? and T2 relaxation times changes after ACL reconstruction in injured and contralateral knees and relationships with bone shape. J Orthop Res 35:707-717
Russell, Colin; Pedoia, Valentina; Majumdar, Sharmila et al. (2017) Composite metric R2 ?-?R1? (1/T2 ?-?1/T1? ) as a potential MR imaging biomarker associated with changes in pain after ACL reconstruction: A six-month follow-up. J Orthop Res 35:718-729
Joseph, Gabby B; McCulloch, Charles E; Nevitt, Michael C et al. (2017) Medial femur T2 Z-scores predict the probability of knee structural worsening over 4-8 years: Data from the osteoarthritis initiative. J Magn Reson Imaging 46:1128-1136
Pedoia, Valentina; Gallo, Matthew C; Souza, Richard B et al. (2017) Longitudinal study using voxel-based relaxometry: Association between cartilage T1? and T2 and patient reported outcome changes in hip osteoarthritis. J Magn Reson Imaging 45:1523-1533

Showing the most recent 10 out of 128 publications