Primary Sjogren's Syndrome (SS) is a common, debilitating disease characterized by lymphocytic infiltrates in exocrine tissue. Understanding of SS pathogenesis and development of effective biologic therapies for SS have been hampered by a lack of strategies for deciphering the specificities and differentiation states of antigen-specific T cells in the targeted tissue. We are in a unique position to address this important challenge due to i) establishment of the successful OMRF Sjogren's Research Clinic, ii) available expertise in proteomics and single cell RT-PCR of lymphocyte receptors, iii) recent discovery of HLA DR3-restricted T cell epitopes of the canonical SS autoantigens and iv) recruitment of strong collaborators who will work with us to transfer a novel T cell receptor (TCR) RNA transfection technology from the field of cancer to autoimmunity. Novel biologic therapies directed against new pathogenic T helper (Th) cell types including Th17 and T follicular helper (TFH) cells are being developed and could be applied to SS if predominant Th differentiation states in SS were known.
In Aim 1 we will use a systematic single cell RT-PCR approach to characterize the TCR repertoire of CD4+ and CD8+ T cells isolated from paired labial salivary gland (SG) biopsy and peripheral blood (PB) samples of SS patients. Evaluation of these data for evidence of T cell clonal expansion and common TCR segment usage or CDRS motifs will disclose evidence for or against involvement of CD8+ T cells in SS and will identify CD4+ or CD8+ TCRs that are expanded in situ within the inflammatory lesion.
In Aim 2, we will synthesize and validate DRS tetramer reagents that will detect Th cells specific for the primary known SS autoantigens Ro/SS-A and La/SS-B. These reagents will be exploited to quantify the frequency of these cells and to determine their predominant memory and Th differentiation states in SG and PB. The relationship(s) of these features to serum Type I interferon activity and measures of disease are expected to lead to insights into SS pathogenesis.
In Aim S we will use a proteomic approach to identify SG antigens recognized by T cells that are clonally expanded in SG of SS patients, a strategy made feasible by the robust TCR RNA transfection technique of our collaborators.

Public Health Relevance

This proposal uses several innovative approaches to reveal key features of immune dysregulation in Sjogren's syndrome, a common and debilitating disease. Moreover, knowledge obtained from completion of these studies will not only facilitate the selection, application, and monitoring of appropriate novel biologic therapies in SS but will further provide new tools for understanding effective immunity in cancer and Infectious diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Specialized Center (P50)
Project #
5P50AR060804-03
Application #
8490321
Study Section
Special Emphasis Panel (ZAR1-MLB)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
3
Fiscal Year
2013
Total Cost
$359,570
Indirect Cost
$94,206
Name
Oklahoma Medical Research Foundation
Department
Type
DUNS #
077333797
City
Oklahoma City
State
OK
Country
United States
Zip Code
73104
Koelsch, Kristi A; Cavett, Joshua; Smith, Kenneth et al. (2018) Evidence of Alternative Modes of B Cell Activation Involving Acquired Fab Regions of N-Glycosylation in Antibody-Secreting Cells Infiltrating the Labial Salivary Glands of Patients With Sjögren's Syndrome. Arthritis Rheumatol 70:1102-1113
Leehan, Kerry M; Pezant, Nathan P; Rasmussen, Astrid et al. (2018) Minor salivary gland fibrosis in Sjögren's syndrome is elevated, associated with focus score and not solely a consequence of aging. Clin Exp Rheumatol 36 Suppl 112:80-88
Sandhya, Pulukool; Kurien, Biji Theyilamannil; Danda, Debashish et al. (2017) Update on Pathogenesis of Sjogren's Syndrome. Curr Rheumatol Rev 13:5-22
Shiboski, Caroline H; Shiboski, Stephen C; Seror, Raphaèle et al. (2017) 2016 American College of Rheumatology/European League Against Rheumatism Classification Criteria for Primary Sjögren's Syndrome: A Consensus and Data-Driven Methodology Involving Three International Patient Cohorts. Arthritis Rheumatol 69:35-45
Li, He; Reksten, Tove Ragna; Ice, John A et al. (2017) Identification of a Sjögren's syndrome susceptibility locus at OAS1 that influences isoform switching, protein expression, and responsiveness to type I interferons. PLoS Genet 13:e1006820
Zhao, Jian; Ma, Jianyang; Deng, Yun et al. (2017) A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases. Nat Genet 49:433-437
Carapito, Raphael; Gottenberg, Jacques-Eric; Kotova, Irina et al. (2017) A new MHC-linked susceptibility locus for primary Sjögren's syndrome: MICA. Hum Mol Genet 26:2565-2576
Leehan, Kerry M; Pezant, Nathan P; Rasmussen, Astrid et al. (2017) Fatty infiltration of the minor salivary glands is a selective feature of aging but not Sjögren's syndrome. Autoimmunity 50:451-457
Stone, Donald U; Fife, Dustin; Brown, Michael et al. (2017) Effect of Tobacco Smoking on The Clinical, Histopathological, and Serological Manifestations of Sjögren's Syndrome. PLoS One 12:e0170249
Talsania, Mitali; Scofield, Robert Hal (2017) Menopause and Rheumatic Disease. Rheum Dis Clin North Am 43:287-302

Showing the most recent 10 out of 52 publications