Core B provides in vitro and in vivo assays for determining the biochemical functionality of BMD-like dystrophin proteins. These internally deleted semi-functional proteins are generated by the other research projects and cores, and include studies of endogenous proteins in human cells from patients with wellcharacterized in-frame mutations (Projects 1, 3), murine constructs of specific deletions delivered to cells or mice in vh/o (Project 1), and in-frame deletions accomplished by exon-skipping therapeutics (Project 2).
The specific aims of Core B include well-established assays developed by the five collaborating laboratories within the Research Center for Genetic Medicine at Children's National Medical Center. An innovative assay offered by Core B is our recently published live-animal imaging method for assessment of muscular dystrophy activity using a near-infrared cathepsin B caged substrate (Baudy et al 2010). An additional innovative assay is quantitative secretome measures of membrane instability using MS/MS profiling. Resource sharing will include publication and public access of standard operating procedures for each assay, as we have done collaboratively with the EU Treat-NMD network for murine pre-clinical endpoints ( (Nagaraju 2009;Spurney et al. 2009). We also offer in vivo assays as a core function for drug screening to external laboratories, and in vitro assays to external laboratories on a collaborative basis.

National Institute of Health (NIH)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Children's Research Institute
United States
Zip Code
Tatem, Kathleen S; Quinn, James L; Phadke, Aditi et al. (2014) Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases. J Vis Exp :51785
Jaiswal, Jyoti K; Lauritzen, Stine P; Scheffer, Luana et al. (2014) S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells. Nat Commun 5:3795
Defour, A; Van der Meulen, J H; Bhat, R et al. (2014) Dysferlin regulates cell membrane repair by facilitating injury-triggered acid sphingomyelinase secretion. Cell Death Dis 5:e1306
Uaesoontrachoon, Kitipong; Quinn, James L; Tatem, Kathleen S et al. (2014) Long-term treatment with naproxcinod significantly improves skeletal and cardiac disease phenotype in the mdx mouse model of dystrophy. Hum Mol Genet 23:3239-49
Heier, Christopher R; Guerron, Alfredo D; Korotcov, Alexandru et al. (2014) Non-invasive MRI and spectroscopy of mdx mice reveal temporal changes in dystrophic muscle imaging and in energy deficits. PLoS One 9:e112477
Henriques-Pons, Andrea; Yu, Qing; Rayavarapu, Sree et al. (2014) Role of Toll-like receptors in the pathogenesis of dystrophin-deficient skeletal and heart muscle. Hum Mol Genet 23:2604-17
Defour, Aurelia; Sreetama, S C; Jaiswal, Jyoti K (2014) Imaging cell membrane injury and subcellular processes involved in repair. J Vis Exp :
Heier, Christopher R; Damsker, Jesse M; Yu, Qing et al. (2013) VBP15, a novel anti-inflammatory and membrane-stabilizer, improves muscular dystrophy without side effects. EMBO Mol Med 5:1569-85
Rayavarapu, Sree; Coley, William; Cakir, Erdinc et al. (2013) Identification of disease specific pathways using in vivo SILAC proteomics in dystrophin deficient mdx mouse. Mol Cell Proteomics 12:1061-73
Uaesoontrachoon, Kitipong; Cha, Hee-Jae; Ampong, Beryl et al. (2013) The effects of MyD88 deficiency on disease phenotype in dysferlin-deficient A/J mice: role of endogenous TLR ligands. J Pathol 231:199-209

Showing the most recent 10 out of 12 publications